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Registration of Images With Outliers
Using Joint Saliency Map

Binjie Qin, Member, IEEE, Zhijun Gu, Xianjun Sun, and Yisong Lv

Abstract—Mutual information (MI) is a popular similarity
measure for image registration, whereby good registration can
be achieved by maximizing the compactness of the clusters in the
joint histogram. However, MI is sensitive to the “outlier” objects
that appear in one image but not the other, and also suffers from
local and biased maxima. We propose a novel joint saliency map
(JSM) to highlight the corresponding salient structures in the
two images, and emphatically group those salient structures into
the smoothed compact clusters in the weighted joint histogram.
This strategy could solve both the outlier and the local maxima
problems. Experimental results show that the JSM-MI based
algorithm is not only accurate but also robust for registration of
challenging image pairs with outliers.

Index Terms—Image registration, joint saliency map, mutual in-
formation, outliers, weighted joint histogram.

I. INTRODUCTION

I MAGE registration can be considered as finding the op-
timal transformation between the reference image and

the floating image to maximize a defined similarity measure
such as mutual information (MI). Since 1995 [1], [2], MI has
been proved to be very effective in image registration. The MI
between and (with intensity bins and ) is defined as:

(1)

where and
are the entropy of the intensities

of image and the entropy of the joint intensities of two im-
ages, is the intensity probabilities with
and , is the joint intensity probabili-
ties estimated by the joint histogram .

MI-based registration methods take advantage of the fact that
properly registered images usually correspond to compactly-
clustered joint histograms [3]. They measure the joint histogram
dispersion by computing the entropy of the joint intensity prob-
abilities. When the images become misregistered, the compact
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Fig. 1. (a)–(b) Intra-operative and pre-operative MR image with a large tumor
resection. (c) Joint histogram dispersion with two clotted clusters (dark red in
pseudo color). (d) Joint saliency map for (a) and (b).

clusters become disperse sets of points in the joint histogram and
the entropy of the joint intensity probabilities increases. Making
no assumptions about the form of the intensity mapping between
the two images, MI is sensitive to the unmatchable outliers, e.g.
the tumor resection in the intra- and pre-operative brain im-
ages [see Fig. 1(a)–(b)]. To reject the outliers, some approaches
are proposed including consistency test [4], intensity transfor-
mation [5], gradient-based asymmetric multifeature MI [6] and
graph-based multifeature MI [7]. However, all these methods do
not emphasize the corresponding salient structures in the two
images to suppress the outliers. Furthermore, MI likely suffers
from local and biased maxima [8] which are caused by the am-
biguities in defining structure correspondence.

Spatial information, i.e. the dependence of the intensities of
neighboring pixels, has been included in MI [9]–[12] to im-
prove registration. Nevertheless, almost all MI-based methods
equally treat each overlapping pixel pair as a separate point in
the overlap area to calculate the joint histogram. This could
raise three issues: 1) when we equally consider the outlier
pixel pairs, the noncorresponding structures overlap and the
histogram will show certain clusters for the grey values of
the outliers. These clusters easily introduce the histogram
dispersion [see Fig. 1(c)] with increasing misregistration; 2)
while registration can be achieved by maximizing the com-
pactness of the histogram, the undesired clotted clusters [see
Fig. 1(c)] related to many noisy pixel pairs in the structureless
regions, such as background and white matter in the brain
image, increase the MI ambiguities and the local maxima [8]
(Fig. 5(c) shows that the normalized MI [1], [20] is in a biased
global maximum when the whole background areas in the two
endoscopic images are exactly aligned); 3) when we group
the intensity pairs as separate points into the histogram, the
independence of the neighboring bins could increase the MI
ambiguities and the local maxima. To solve this problem, joint
histogram smoothing (or blurring) [5], [8] has been used to
increase the dependence of the neighboring histogram bins. We
address these issues above as follows.

In fact, image registration is to match the corresponding
salient structures in both images. To suppress the outliers and
the homogeneous pixel pairs, the corresponding pixel pairs in
the corresponding salient structures should contribute more to
the joint histogram. For example, the corresponding salient
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pixel pairs in the normal brain tissues should be given more
weight in the histogram than the homogeneous and the tumor
resection pixel pairs. To weight each overlapping pixel pair
when computing the joint histogram, we propose a novel joint
saliency map (JSM) to assign a joint saliency value between
0 and 1 to the pixel pair. The idea of JSM is demonstrated
schematically in Fig. 1(d), where the high joint saliency values
are assigned to the corresponding salient pixel pairs rather than
the outlier and the homogeneous pixel pairs.

The JSM is determined by correlating each overlapping pixel
pair’s respective regional saliency vectors (RSVs). The RSV
characterizes the regional salient structure around each under-
lying pixel after a principal axis analysis (PAA) of the pixel’s
regional saliency distribution. In the JSM-weighted joint his-
togram (WJH), the contributions of the corresponding salient
structures are distributed over neighboring histogram bins. This
leads to the smoothing of the compact clusters for the grey
values of the corresponding salient structures, which can solve
both the outlier and the local maxima problems.

The proposed JSM-MI has been applied to the rigid regis-
tration of 2-D images. Experimental results show that, com-
pared to other MI-based registration methods, JSM-MI method
achieves better robustness and higher accuracy for the registra-
tion of challenging image pairs with outliers. The letter is or-
ganized as follows. We first introduce the JSM for WJH in MI.
Next, we report some experiment results to identify the registra-
tion performance on accuracy and robustness. Finally, the con-
clusions close this letter.

II. METHODS

A. Regional Saliency Vector

We use visual saliency operator to enhance the regional
salient structures we are interested in. Many techniques have
been developed to define the saliency of image, i.e., using
edge gradient, local phase [12], salient regions [13], corner
and keypoints [14]. Gradient map has been incorporated into
the MI-based registration methods [9]–[11]. However, gradient
is a local feature and sensitive to noise. Local phase [12] and
salient regions [15] suffer from high computational complexity.
Corner and keypoint can not be defined for each image pixel.
Inspired by the center-surround mechanism [16], [17] which
has defined the intensity-contrast-based visual saliency map, we
define a two-step scale and rotation invariant saliency operator
based on intensity contrast as follows:

(2)

where is the 1-pixel radius circular neighborhood of the pixel
position at scale , is the local saliency com-
puted for the intensity in the Gaussian image pyramid [18]
at scale , is the intensity of the pixel in the ’s neigh-
borhood. The multiscale local saliency map at the finest
scale is reconstructed by summing up all the saliency maps at
the coarser scales.

In the second step, a PAA of the saliency distribution in a
certain region assigns regional saliency to each pixel based on
the inertia matrix:

(3)

Fig. 2. (a)–(b) RSVs for the subblocks in the reference and the floating images
(size: 400 � 300 pixels).

where ,
and are the

central -moment, the centroid and the -moment of
the saliency distribution in the 5.5-pixel radius circular
neighborhood around each pixel. This regional saliency dis-
tribution describes a 2-D regional salient structure. The two
eigenvectors of the matrix represent the orthogonal coor-
dinate system within the regional salient structure, while the
corresponding eigenvalues give information about the length of
the respective axes. Because the regional information about the
orientation of the salient structure is mostly stored along the
first eigenvector corresponding to the largest eigenvalue, the
first eigenvector referred as the RSV is enough to represent the
regional salient structure around a pixel [see Fig. 2(a)–(b)].

B. Joint Saliency Map

Given two RSVs of each overlapping pixel pair, JSM is ready
to describe the matching degree between the two RSVs. The
inner product of two RSVs is a measure of their co-linearity
and naturally can be used as their similarity measure. The es-
sential idea of JSM is an assumption, which is always valid in
practice according to the empirical experience in image registra-
tion: for two precisely aligned multimodal (or multitemporal)
images, the majority of the corresponding pixel locations are
very likely to produce the RSVs with similar orientations [see
Fig. 2(a)–(b)]. This is because the two images under registra-
tion fundamentally depict the same image structures. As a re-
sult, the RSVs of the corresponding pixel locations from two
images could present relatively coincident orientations in gen-
eral. Therefore, the angle between the two RSVs ( , ) is
simply calculated, making the scalar measure of the joint
saliency value :

(4)

A JSM value near one suggests that the underlying pixel pair
originates from the corresponding salient structures. Contrarily,
a JSM value near zero indicates that the underlying pixel pair
comes from either the outliers or a homogeneous region. To
speed up the registration without reducing accuracy, the pixel
with a small saliency value below a threshold value (10% of
the maximum saliency value) is assigned a zero JSM value di-
rectly. The JSM would primarily respond to the high-gradient
edge pixels if a high threshold value is chosen. However, the
JSM does not simply emphasize the common image gradients in
the two images. Fig. 3(d)–(f) present the image gradient and the
JSM profiles of the same line (marked as dashed lines across the
tumor areas) at the two registered images [see Fig. 3(a)–(b)]. As
shown in the figures, the image gradient features in Fig. 3(d)–(e)
are very noisy and do not agree with each other at each over-
lapping location. The JSM in Fig. 3(f) can accurately preserve
the corresponding salient structures in larger capture range with
smaller variability than the image gradients.
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Fig. 3. (a)–(b) The reference and the floating images for the gradient magnitude
and the JSM magnitude. (d) Compact JSM-WJH smoothing for (a)–(b). (d)–(e)
Gradient value profiles of the lines in (a)–(b), which are marked as dashed lines.
(f) JSM value profiles of the lines in (a)–(b).

C. JSM-Weighted Joint Histogram

The contribution of the interpolated floating intensity
to the joint histogram is weighted by a of the JSM (the
pixel positions are overlapped at the position ). For
2-D image registration, if using a nearest neighbor or a bilinear
interpolation, the value should be added to the histogram
entry . In bilinear partial volume distribution (PV) in-
terpolation, the contribution of the to the histogram, dis-
tributed over the intensity values of all nearest neighbors of the
reference pixel position on the grid of , is weighted using
the . Similarly, JSM could be easily incorporated into other
interpolation schemes and Parzen-based joint histogram.

In the JSM-WJH, the outliers and homogeneous regions have
little impact on the histogram distribution. Furthermore, each
histogram entry for the corresponding salient structures is the
sum of smoothly varying fractions of one, such that the his-
togram changes smoothly in the neighboring bins related to
those structures. As a result, the compact histogram smoothing
[see Fig. 3(c)] is introduced by highlighting the grey values of
the corresponding salient structures. Computed from the com-
pact and smooth histogram, the MI is then maximized to achieve
robust and accurate rigid registration.

D. Computational Complexity

The JSM should be recalculated with the transformation
changing the overlap area at each registration iteration. The
RSV orientation for a JSM calculation could be easily reori-
ented as it is done in the diffusion tensor image registration
[19]. Nevertheless, to ensure the numerical stability and the
computation speedup, a new JSM at each iteration can be
simply updated from the JSM of the previous iteration through
the PV interpolation. The JSM could be re-calculated after
iterations to reflect the updated correspondence
between the salient structures in the two images.

III. EXPERIMENTAL RESULTS

We evaluated our JSM-MI-based (JMI) algorithm on 11 chal-
lenging image pairs including CT-PET tumor images, MR brain
tumor resection images, optical images with background/fore-
ground clutter and etc. We implemented the JMI algorithm using
the simplex optimization in a multiresolution scheme [18]. The

Fig. 4. Registration results for the two images in Fig. 2(a)–(b). (a) JMI. The
yellow contour overlap of the book validates the registration accuracy owing to
the additive mixing of red and green. (b) NMI. (c) RMI. (d) HMI. (e) GMI. (f)
PMI. (g)–(h) NMI and JMI similarity surfaces plotted as a function of � and �
translation (within a range of �10 pixels around the matching position).

TABLE I
REGISTRATION RESULTS FOR FIGS. 4 AND 5 (THE TRANSLATIONS �

AND � ARE IN PIXELS IN THE � AND � DIRECTIONS, THE ROTATION �

IS IN DEGREES AROUND THE CENTER OF THE IMAGES)

algorithm stops if the current step length is smaller than
or if it has reached the limit of 200 evaluation numbers. The
challenging image pairs include some complex outliers that the
normalized MI-based method and four of MI-based adaptations
with incorporating spatial information fail to deal with. Due to
space restrictions, we only show some typical experimental re-
sults in this letter.

Fig. 4 shows the various registration results for the two im-
ages at Fig. 2 with a foreground book and the large changes of
background appearance. To facilitate the visual assessment of
registration accuracy, the green floating contours and the red ref-
erence contours obtained by Canny–Deriche edge detector have
been overlaid over each other. The subpixel registration accu-
racy (see Table I, case 1) of our JMI algorithm can be validated
by the book’s yellow contour overlap, which is due to the addi-
tive color mixing of the green and the red contour [see Fig. 4(a)].

Using particle swarm optimization (PSO) to deal with the
local maxima, the other methods based on normalized MI
(NMI) [1], [20], regional MI (RMI) [21], high-dimensional
MI (HMI) [22], MI with gradient information (GMI) [10], and
phase MI (PMI) [12] show different misregistration results
in Fig. 4(b)–(f). The PSO is conducted with 20 particles and
allowed to experience 200 evaluation iterations. The algorithm
stops if it has reached the limit of evaluation numbers or if the
minimum error conditions is satisfied. The computation
time needed for the different algorithms are listed in Table II.

Fig. 4(g)–(h) show that the NMI and JMI similarity surfaces
are plotted as a function of and translation. In this case, the
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TABLE II
COMPUTATION ITERATIONS AND RUNTIME IN SECONDS FOR FIG. 4.
(MATLAB 6.5, SINGLE CORE INTEL CELERON 2.8 GHz, RAM 2 GB)

Fig. 5. (a)–(b) Reference and floating endoscopic images (size: 720 � 572
pixels) with a surgical tool and illumination changes. The two images are fused
using a mosaic pattern. (c) NMI. (d) PMI. (e) JMI.

JSM removes all local maxima and achieves the global max-
imum at the registration position, while the NMI suffers from
the biased maximum at the mismatching position.

Fig. 5(a)–(b) show the reference and floating endoscopic im-
ages (720 572 pixels) including a surgical instrument with
different illuminations. Using a mosaic pattern to fuse the two
images, Fig. 5(c)–(d) show the NMI-based and PMI-based mis-
registration results. Fig. 5(e) shows our accurate JMI-based reg-
istration result (see Table I. case 2).

IV. CONCLUSION

We propose an effective JSM to solve the problems of out-
liers and local maxima in MI-based image registration. Repre-
senting the corresponding salient structures in the two images to
be registered, JSM is easily integrated into other intensity-based
similarity measures for 3-D nonrigid registration. Independent
of this work but subsequent to our preliminary conference pa-
pers [23], [24] which this letter elaborates on and extends, Ou
et al. [25] developed a similar mutual saliency map for outlier
rejection in 3-D nonrigid image registration.

Additionally, our method is an intensity-based method and
also sensitive to the initial conditions. It is necessary in principle
to set the proper initial conditions close to a correct alignment
solution, which can be achieved by coarse alignment techniques
such as principal axes based method. Nevertheless, all instances
of correct registration in this letter are directly performed by our
method without any coarse alignment.
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