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Texture Variation Adaptive Image Denoising
With Nonlocal PCA
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Abstract— Image textures, as a kind of local variations, provide
important information for the human visual system. Many image
textures, especially the small-scale or stochastic textures, are rich
in high-frequency variations, and are difficult to be preserved.
Current state-of-the-art denoising algorithms typically adopt
a nonlocal approach consisting of image patch grouping and
group-wise denoising filtering. To achieve a better image denois-
ing while preserving the variations in texture, we first adaptively
group high correlated image patches with the same kinds of
texture elements (texels) via an adaptive clustering method. This
adaptive clustering method is applied in an over-clustering-
and-iterative-merging approach, where its noise robustness is
improved with a custom merging threshold relating to the
noise level and cluster size. For texture-preserving denoising
of each cluster, considering that the variations in texture are
captured and wrapped in not only the between-dimension energy
variations but also the within-dimension variations of PCA
transform coefficients, we further propose a PCA-transform-
domain variation adaptive filtering method to preserve the local
variations in textures. Experiments on natural images show the
superiority of the proposed transform-domain variation adaptive
filtering to traditional PCA-based hard or soft threshold filtering.
As a whole, the proposed denoising method achieves a favorable
texture-preserving performance both quantitatively and visually,
especially for irregular textures, which is further verified in
camera raw image denoising.

Index Terms— Texture-preserving denoising, adaptive cluster-
ing, principal component analysis transform, suboptimal Wiener
filter, LPA-ICI.

I. INTRODUCTION

TEXTURE, as a systematic local variation of image val-
ues, is an essential component of natural visual infor-

mation reflecting the physical properties of the surrounding
environment [1]. There are two basic types of texture pattern:
regular texture that consists of repeated texture elements (tex-
els) and stochastic texture without explicit texels [2], [3].
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Most of the real-world textures locate in-between these two
extremes.

Preservation of texture variation is necessary for image
preprocessing tasks such as image denoising [2], [4], so as to
help make better use of natural feature details for image con-
tent interpretation. These feature-preserving image processing
researches [2], [5]–[7] have attracted great attention in recent
years. However, texture variation, especially the small-scale or
stochastic texture variation often lies in high frequency bands.
These high frequency variations are difficult to be preserved
during noise removal and tend to be smoothed. The existing
state-of-the-art denoising methods often adopt the nonlocal
methodology [8]–[10], which firstly uses patch grouping (PG)
techniques to exploit the nonlocal self-similarity (NSS) prior
in natural images, and then uses denoising filters (DF) for
group-wise denoising. Over-smoothness of the image textures
is caused by the deficiencies in both PG and DF procedures.

PG techniques collect similar (high-correlated) patches
together so that DF can exploit the NSS to boost the denoising
performance. During the PG process, if dissimilar patches are
gathered in the same patch group, it would be much more
difficult for DF to preserve the texture variations. The most
widely-used PG techniques are block matching and K-means
clustering. Unfortunately, they perform poorly in gathering
similar patches under noise interference due to their respective
deficiencies.

(i) Block matching methods [8]–[12] are based on the
computation of Euclidean distance between patch vec-
tors, which are typically not robust to noise. Moreover,
the size of patch groups in block matching is usually set
manually so that some dissimilar patches may be grouped
together.

(ii) K-means clustering algorithm divides the data points of a
dataset into a fixed number of clusters such that a certain
metric of the distance between clusters is minimized.
On the one hand, the optimal cluster number cannot be
determined easily [13]–[15]. On the other hand, applying
K-means clustering to image patches can lead to heavy
computational burden due to the high dimensionality of
image data.

To overcome these problems, an efficient adaptive clustering
method is designed in AC-PT [6], which not only determines
the optimal cluster number automatically, but also accelerates
the clustering without dimension reduction that can lead to the
information loss. However, in case of high noise level, slight
under-segmentation still can be observed.
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Fig. 1. The between- and within-dimension variations of PCA trans-
form coefficients for a patch-group matrix consisting of similar patches.
(a) The first dimension (signal-dominant) in PCA transform domain, (b) The
last dimension (noise-dominant) in PCA transform domain. The difference
between (a) and (b) shows the between-dimension variations, while the
drastic fluctuation of coefficient value within (a) shows the within-dimension
variations.

With similar patches collected by PG, it is important to find
a suitable DF for the texture-preserving denoising of the patch
groups. For the DF design, the state-of-the-art non-local meth-
ods usually incorporate NSS with transform domain methods
to decorrelate the dimensions of patch vectors so that most
of the variations among the highly correlated patches are pre-
served in some of the dimensions, with noise evenly distributed
among all the dimensions, thus favors to improve denoising
performance. Classical transform methods in DF usually use
fixed bases such as discrete wavelet bases [16]–[19], discrete
cosine transform bases [8], [11], [20]. One typical algorithm
is BM3D [11] that uses fixed 3D transform to achieve an
efficient denoising performance. However, fixed transform
bases are not enough to represent the complex natural textures
and often brings in artifacts.

Compared with fixed transform, adaptive transform, such as
sparse representation and PCA, shows fewer artifacts. We see
that the integration of NSS with sparse representation leads to
excellent denoising performance, for example, [14] and [21].
However, stochastic texture variation that behaviors similarly
to noise can not be represented sparsely. Thus the optimization
based on sparsity prior can lead to the loss of stochastic texture
information.

In the past decade, many PCA-based denoising meth-
ods have achieved state-of-the-art denoising performance.
In the PCA transform domain, the energy of PCA coeffi-
cients among different dimensions corresponds to their respec-
tive eigenvalues and varies from each other; Meanwhile,
within each dimension, especially the first few dimensions
with the highest eigenvalues, both the noisy coefficients and
their noise-free counterparts show a high variation, even
though they come from the similar patches collected via
PG. Fig. 1 shows an example of such variation in the
first PCA dimension, where noisy and noise-free coeffi-
cients have a similar and severe up-and-down fluctuation (or
variation). These drastic within-dimension variations of the

transform coefficients come from the variations in natural
image textures. Currently, many PCA-based denoising algo-
rithms only consider the between-dimension energy varia-
tions and fail to recognize the within-dimension variations
for the texture preservation [9], [12], [16], [22]. Specifically,
the iterative and non-iterative singular value (eigenvalue)
thresholding (SVT) algorithms specialize in shrinking the
singular values (eigenvalues) of dimensions based on the
low rank prior, while PCA transform domain filtering based
methods such as [12] and [22] simply employ a “global”
Wiener filter, where the filter parameters are estimated
using a dimension-wise overall averaging. Recently, a novel
detail-preserving denoising algorithm, AC-PT [6] is proposed
to preserve these within-dimension variations via a combi-
nation of two thresholding operations: the hard thresholding
of eigenvalues and the PCA-domain Wiener filtering with the
filter parameters locally estimated, which are designed based
on the consideration of between-dimension energy variations
and within-dimension variations, respectively. The AC-PT
method has been proven effective in denoising the opti-
cal coherence tomography (OCT) vessel images [23]. How-
ever, the simple Wiener filter adopted in AC-PT may cause
over-smoothing and loss of texture detail as demonstrated
in [24], and the fixed window width with which filter parame-
ters are locally estimated also makes a not robust denoising
performance.

In this work, an image denoising algorithm that preserves
textures is proposed via PCA-transform-domain texture Varia-
tion Adaptive filtering for Adaptive Clustered patches (ACVA).
We overcome the deficiencies of abovementioned algorithms
and achieve a better denoising performance both quantitatively
and visually. Generally, the contributions of this paper are
embodied in four aspects:

• For PG, we improved the robustness of adaptive cluster-
ing method to high noise level by using a custom merging
threshold (for iterative merging) that is a function of both
noise level and cluster size instead of noise level only.

• For DF, considering the texture variations wrapped in
the PCA coefficients of each signal-dominant dimension
and the characteristic of over-smoothing of Wiener filter,
we perform an improved denoising of the signal-dominant
dimensions using the coefficient-wise suboptimal Wiener
filter with the filter parameters tracking texture varia-
tions adaptively. Specifically, the improvement is mainly
reflected in two aspects: a) The window width used
for local parameter estimation is not fixed as done in
AC-PT [6] but adaptively calculated by local polynomial
approximation-intersection of confidence intervals (LPA-
ICI) technique [25]; b) Instead of using the traditional
Wiener filter, here for the first time, we propose to further
preserve the texture variations in transform domain by
applying the suboptimal Wiener filter [24] that is origi-
nally used for multichannel speech noise reduction.

• Another difference from AC-PT [6] is that to avoid the
significant increase of computational burden of adaptive
clustering along with the image size, we adopt a sliding-
window-and-aggregation approach with fixed window
size for better denoising performance.
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• Besides of additive Gaussian noise reduction,
the proposed denoising method is applied to remove
Poisson-Gaussian noise in the camera raw image.

The rest of the paper is organized as follows.
In Section II we introduce the noise model. Section III,
IV and V are about the details of the adaptive patch clustering,
texture variation adaptive filtering for PCA coefficients and
the sliding window and aggregation technique, respectively.
Experimental results are displayed in Section VI. Finally,
conclusion is given in Section VII.

II. NOISE MODEL

The additive white Gaussian noise (AWGN) is written as:
y = x + n, (1)

where x is noise-free data, y is noisy, and n follows the normal
distribution with zero mean and variance σ 2. AWGN is signal-
independent.

Being different from AWGN, the Poisson-Gaussian noise
corrupting the camera raw images that are acquired from
digital cameras is typically signal-dependent noise. Let x be
a noise-free signal at the position c. The observed data with
Poisson-Gaussian noise can be written as:

y(c) = ρ/α + bv, (2)

where ρ ∼ P(α(x(c) − p)) is a Poisson variable with the
parameter α(x(c) − p), v follows the normal distribution
N(0, 1), and α, b, p are parameters of the Poisson-Gaussian
noise.

After applying a variance stabilization transform for the
signal-dependent Poisson-Gaussian noisy signal, we can
remove the noise using the denoising methods for additive
white Gaussian noise. One well-known variance stabi-
lization transform is called generalized Anscome trans-
form (GAT) [26], [27]. GAT can approximately transform
Poisson-Gaussian noise into additive white Gaussian noise
with unitary variance:

f (y) =

⎧⎪⎨
⎪⎩

2

√
y ′ + 3

8
+ σ ′2, y ′ > −3

8
− σ ′2

0, y ′ ≤ −3

8
− σ ′2

(3)

where y ′ = αy and σ ′ = αb.
Let x be the noise-free data, and the denoised data is

treated as E[ f (y)|x]. The exact unbiased inverse of the GAT
is defined as:

T (I G AT ) : E[ f (y)|x] �−→ E[y|x], (4)

where E[y|x] = x , E [ f (y)| x] = 2
+∞∑
y=0

(√
y + 3

8 · x ye−x

y!
)

.

A better camera raw image denoising with GAT comes to
require a better Gaussian denoising algorithm. Before we detail
the proposed denoising algorithms, we want to make clear the
symbol system. Generally, we use lower (upper) case bold-face
letters to stand for column vectors (matrices). Denote by X =
(x) ∈ R

M×L a M × L matrix with column vectors xi , 1 ≤ i ≤
L. Superscript T represents transpose of a vector or a matrix.

Fig. 2. Flowchart for the proposed algorithm.

Given an image � ∈ R
s×t , the total number of all the possible

d × d overlapping patches Pi ∈ R
d×d is L = (s − d + 1) ×

(t − d + 1) with i ∈ {1, 2, · · · , L}. The observation vector
yi ∈ R

M×1 with M = d2 is constructed by stretching the
patch Pi . So the image � can be represented as Y� ∈ R

M×L

with each column being a stretched patch. A certain cluster can
be represented with a matrix with each column representing a
stretched patch. For any data matrix Y, we add the subscript c

to denote the centralized matrix Yc = Y − E(Y), where E(·)
represents the expectation.

The proposed denoising method is depicted in Fig. 2. In the
noise level estimation step, the noise level can be estimated as
in [6] for Gaussian denoising. For Poisson-Gaussian denois-
ing, we can estimate the noise parameters as in [26] and then
transform Poisson-Gaussian noise into additive white Gaussian
noise with unitary variance. In the following part of this
paper, we focus on illustrating the novel part of the proposed
denoising algorithm (in the dashed red boxes): (1) improved
adaptive patch clustering for PG is discussed in Section III; (2)
variation-adaptive filtering in PCA transform domain for DF
is studied in Section IV; (3) sliding window and aggregation
technique are discussed in Section V.

III. AC-STEP: ADAPTIVE CLUSTERING OF PATCHES

Many popular clustering algorithms have a common defi-
ciency that an optimal number of clusters is difficult to
be determined. However, it is easy for us to estimate an
approximate range of the cluster number. Supposing the
patch size is d × d and the image size is s × t , in most
cases, the maximal cluster number should be below st

d2 .
Assuming each pixel to be the center of an image patch,
we can obtain the maximal cluster number by separating
the image into small non-overlapping segments, and each
small segment with area approximately equal to d2 represents
a distinct cluster. Meanwhile, the minimal cluster number
is 1.

Since we have the approximate range of cluster number
(i.e., from 1 to st

d2 ), an intuitive idea is that we can determine
the optimal number of clusters by first obtaining the maximal
number of clusters, and then iteratively merging the similar
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clusters according to a custom threshold. To this end, there
are two problems that need to be solved:
a) clustering a huge number of clusters requires a huge

computational burden due to the high dimensionality of
image patches;

b) finding a way to calculate a suitable merging threshold for
merging similar clusters.

For the first problem, we adopt the divide and conquer
technique [28], [29]. The divide and conquer technique is a
two-stage clustering scheme, which accelerates the K-means
clustering with improved performance: It first clusters a small
number of clusters using K-means, and then within each
cluster it performs the K-means clustering again to further
increase the cluster number.

For the second problem, we derive the merging threshold on
the distance of any two similar clusters according to the noise
level and cluster size. Specifically, we consider one special
case, where we have two similar clusters A ∈ R

M×La and
B ∈ R

M×Lb with very different sizes La � 1 and Lb = 1.
Supposing the noise variance in the center of the large cluster
A is small enough to be ignored, we further denote by ya = x
and yb = x + n the centers of A and B respectively, where
x is noise-free, and the entries ni ∼ N(0, 1), 1 ≤ i ≤ M of
vector n are independent and identically distributed (i. i. d. ).
The between-cluster distance is

D(B, A)2 = ‖yb − ya‖2
2 = ‖n‖2

2 =
M∑

i=1

n2
i , (5)

and D(B, A)2 follows the chi-squared distribution with
M degrees of freedom. These two clusters obtained from
K-means with such huge discrepancies in size usually have
a very low probability of belonging to the same fea-
ture. Thus, the probability of merging the two clusters is
Prob(D(B, A)2 < ξ) = ε, where ξ is the merging threshold
and ε is a very small value. If we set M = 64 and ε = 1.3 ×
10−10, we have ξ ≈ 16.0. Furthermore, if ni ∼ N(0, σ 2), 1 ≤
i ≤ M , ξ ≈ 16.0σ 2. When cluster B is enlarged to normal
size, the noise variance in its center yb will be much smaller.
Therefore, the merging threshold ξ derived in that special case
is essentially the largest acceptable dissimilarity between the
two similar clusters that we want to merge together.

The merging threshold in AC-PT [6] is only related to noise
level. However, the cluster size is also an important factor
to be considered in the merging threshold design when a
cluster center is calculated via an average of all the samples
in the cluster and the noise variance in the cluster center
decreases quickly as the cluster size increases. AC-PT only
considers a special case in which a pair of clusters have huge
difference in cluster size. However, it does not work well
in the case of a pair of large clusters in which the noise’s
influences on both of these two large clusters’ centers are
small enough to be ignored. In this case, AC-PT shows a poor
denoising performance at high noise levels where typically
there exist more large clusters constructed via AC using an
overlarge merging threshold. Therefore, setting a different
merging threshold is necessary for the case of two large
clusters (where the cluster sizes are above a certain value).

Fig. 3. The segmentation results on the noisy image with σ = 50
using K-means clustering and the adaptive clustering methods. (a) Lena;
(b) Noisy image; (c) The clustering result of the first stage based on K-means;
(d) Over-clustering based on divide-and-conquer technique; (e) Adaptive
clustering as in AC-PT [6]; (f) Adaptive clustering considering cluster size.

Specifically, when the size of the smaller cluster in a pair of
clusters is larger than a certain value LT , we decrease the
probability of merging the different clusters by amplifying the
between-cluster distance with an amplification coefficient ρ:
D̂(B, A)2 = D(B, A)2/ρ. We empirically set LT = 200 and
ρ = 0.7 to get a satisfactory performance.

The comparison of different clustering methods displayed
in Fig. 3 illustrates how the adaptive clustering methods
segment the noisy images adaptively at high noise level σ =
50. The clustering result of the first stage based on K-means
is somewhat under-segmented, while the segmentation by
over-clustering is a typical over-segmentation. By comparison,
the two results (Figs. 3(e)-(f)) by adaptive clustering methods
are more favorable. Moreover, we see that the segmentation
based on the improved adaptive clustering preserves better the
edges of Lena’s lip and the hat in the mirror in the white
boxes.

In summary, we conclude the AC-step of the proposed
ACVA method in Algorithm 1.

IV. VA-STEP: VARIATION-ADAPTIVE

FILTERING IN PCA DOMAIN

In PCA transform domain, inspired by the between-
dimension energy variations and the within-dimension vari-
ations of PCA coefficients in the signal dominant dimensions
with the highest eigenvalues (see Fig. 1), we use a two-step
texture variation adaptive approximation strategy to achieve
a texture-preserving denoising performance. First, a low rank
approximation is implemented via dimension selection based
on hard thresholding of eigenvalues to selectively preserve the
energy variations of the signal dominant dimensions. Second,
each signal dominant dimension is further denoised adaptively
via a coefficient-wise adaptive filter with locally estimated
filter parameters to protect the underlying within-dimension
texture variations.
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Algorithm 1 Adaptive Clustering Via Over-Clustering and
Iterative Merging

A. Dimension Selection Considering the Between-Dimension
Energy Variations

Since the texture information is hardly remained in the
noise-dominant dimensions with the lowest eigenvalues,
we discard the noise-dominant dimensions via dimension
selection before the within-dimension filtering to reduce the
computational cost and improve the denoising performance.

Considering the centralized noisy cluster matrix
Yc = (yc) ∈ R

M×L , Yc = Xc + N, where Xc = (xc) ∈ R
M×L

is noise-free and N = (n) ∈ R
M×L is the noise matrix

with each column vector ni ∼ NM (0, σ 2I), where I is
identity matrix. Suppose Yc = √

L
∑min(M,L)

i=1

√
λi uy,i vT

y,i
and the low rank approximation (with rank R)
Xc = √

L
∑R

i=1

√
λx,i ux,i vT

x,i with singular values
√

Lλi

and
√

Lλx,i , and singular vectors uy,i ,vy,i , ux,i and
vx,i , 1 ≤ i ≤ min(M, L).

The dimension selection can be done based on the Gaussian
spiked population model [30], [31]. Suppose γ = M/L is a
constant. Letting L → ∞ and λn± = σ 2(1 ± √

γ )2, there
is:

lim
L→∞ λi =

{
ρ(λx,i ), i f i ≤ R and λx,i > σ 2γ 1/2.
λn+, otherwi se.

(6)

where ρ(λ) = (σ 2+λ)(γ σ 2+λ)
λ (for any λ > 0) is a real-valued

function.
The Gaussian spiked population model implies that for the

normal size cluster matrices the eigenvalues of noise-dominant
dimensions are below λn+ approximately. Since the dimen-
sions with eigenvalues close to λn+ are still noisy, we set a

correction coefficient μ to estimate the rank R as:

R ≈
M∑

i=1

1(λi > μλn+) (7)

Thus the low rank approximation can be computed as:

YR = √
L

R∑
i=1

√
λi uy,ivT

y,i . (8)

According to [6], we set μ = 1.1 to get a favorable denoising
performance.

B. Within-Dimension Variation Adaptive Filtering

Consider the low-rank matrix YR = URPR obtained in the
previous section, where UR consists of the selected eigen-
vectors UR = [uy,1, uy,2, · · · , uy,R], and PR consists of the
corresponding signal-dominant dimensions in PCA transform
domain:

PR = [p1, p2, · · · , pR]T , (9)

where pi = √
Lλi vy,i (1 ≤ i ≤ R) is the selected PCA

dimension.
For illustrative purpose, we further extract the coefficients

in any dimension pi = [pi,1, pi,2, · · · , pi,L ] and denote these
coefficients in the i th dimension as the noisy observations of
a “signal sequence” containing L observation points: y(n) =
pi,n, n = 1, 2, · · · , L. Let y(n) = f (n) + w(n), where w(n)
is i.d.d Gaussian noise of zero mean and variance σ 2

w = σ 2,
and f (n) (with variance σ 2

f ) is the noise-free signal that we
want to estimate. Thus for an observation at a point n, there
is y(n) ∼ N( f (n), σ 2). Here, some specific observations
are considered as being “similar” to each other when their
respective means f (n) are close to each other, and we say that
there is a considerable “variation” between the observations
when their respective means are different from each other.

Before we detail how to denoise y(n) and obtain the
estimate f̂ (n) for each dimension, we must learn some useful
characteristics on the extracted signal sequence y(n) and its
corresponding f (n). One typical example of this kind of the
signal sequence is displayed in Fig. 1(a), where the vertical
axis corresponds to the signal value for the noisy signal
y(n) (blue line) and noise-free signal f (n) (red line) and
the horizonal axis is the sequence index n corresponding to
different patches. We see that the signal values are aggregated
densely in a certain interval, implying that their respective
means are close to each other. This dense aggregation of all
the means can be regarded as a global similarity between
all the observations. Moreover, there is also a drastic and
irregular fluctuation for both the noise-corrupted signal y(n)
and noise-free signal f (n). This fluctuation of noise-free signal
(i.e., the sequence of the means) is called internal variation
of the signal sequence. The global similarity and internal
variation of the signal sequence in PCA transform domain
can be interpreted in the corresponding spatial domain. Every
transform-domain signal observation comes from a certain
patch of specific patch group in spatial domain. All the pathes
in the same patch group are similar to each other (i.e., a global
similarity for the whole patch group), while the patches within
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Fig. 4. Window-size determination based on the LPA-ICI method. A large patch cluster is built by the AC method from the noisy Lena image with σ = 10.
This large cluster consists of 2 small clusters (C1 and C2) and the 2 clusters’ corresponding patches are colored in the original noisy image. In the line charts,
the blue and red lines represent the noisy and noise-free coefficients in the second principal component dimension respectively, while the green line shows
the coefficients’ corresponding window sizes computed via the LPA-ICI method.

the patch group are still different from each other to some
extent (i.e., an internal variation). Both the global similarity
and the internal variations in spatial domain are transformed
into the orthogonal PCA transform domain.

Considering the above characteristics in estimating each
signal observation for PCA coefficient, we have three aspects
of consideration: 1) The noise-free signal is rich in unsmooth
and irregular variations that convey rich texture information.
These unsmooth and irregular variations will be distorted
by the denoising filters based on smoothness (continuity)
constraints; 2) Based on the global similarity between the
signal observations, we can find the sample observations with
high similarity to the signal to be estimated and average them
to get an optimal estimate for boosting denoising performance;
3) To preserve the internal variations within the observations,
we must choose the sample observations adaptively according
to the signal to be estimated, such that the highly similar obser-
vations around the signal to be estimated should be selected
while other dissimilar observations need to be excluded.

For the consideration 1), we estimate f (n) by applying
an efficient Wiener filter that has been used for the favor-
able PCA domain filtering by many denoising algorithms,
and we particularly use a suboptimal Wiener filtering to
avoid signal distortion and preserve the variations. However,
the satisfactory variation-preserving performance of subopti-
mal Wiener filter is highly dependent on an optimal estimate
of its parameter, i.e., the auto-covariance of y(n): Ry(n) =
E(y(n)2). Based on the consideration 2) and 3), we estimate
the auto-covariance of y(n) in a point-wise approach. For each
signal its auto-covariance is estimated via an adaptive local
average of similar observations. As a whole, this point-wise
suboptimal Wiener filtering consists of two steps: locally
adaptive estimation of filter parameter and suboptimal Wiener
filtering using the estimated filter parameter.

1) Estimating the Filter Parameter Locally Based on LPA-
ICI: To denoise the signal observation y(n) at point n with
Wiener filter, we need to estimate its filter parameter, i.e., auto-
covariance Ry(n) to further compute the cross-covariance
R f y(n) = Ry(n) − σ 2 between y(n) and its noise-free

counterpart f (n). The auto-covariance at point n can be
written as: Ry(n) = E(y(n)2) = f (n)2 + σ 2, where the
expected value can be approximated statistically via an average
of several squared signal samples.

The remaining problem is how to accurately select the
signal samples with high similarity to the signal (at point n)
to be estimated. A simple practical solution is to select the
observations in a local neighborhood of the signal point n
because relatively higher similarity is more likely to happen
in the local neighborhood due to the property of the applied
PG technique. In particular, for AC, as shown in Fig. 4,
a large cluster matrix consists of many small local segments
that are actually small clusters matrices generated from the
over-clustering stage in AC and typically have a higher similar-
ity. Furthermore, the local neighborhood has been used for the
parameter estimate of image filters [6], [32], [33] and proves
to achieve a promising denoising performance.

Being different from [6] that chooses the local neighbor-
hood in a fixed-size window for local estimate, the proposed
method use LPA-ICI [25] to adaptively determine the window
width for a better local estimate. Here, choosing the win-
dow width is essentially equivalent to choosing the estimate
samples. A small width corresponds to a smaller moving
window with fewer samples for the local parameter estimate
and therefore to noisier estimate, with higher variance and
typically decreased estimation bias, and vice versa. Therefore,
the window width controls the trade-off between the bias and
variance in the local estimate and the varying window width
for the local estimate is very important. This assumption is
confirmed by the fact that in density estimation [34] and signal
reconstruction [35], [36] studies in the literature, almost all the
adaptive-width windows [35] have been shown to be superior
to fixed-width windows [36].

The local polynomial approximation (LPA) method, com-
bined with intersection of confidence intervals (ICI) rule, is a
method originally developed for pointwise adaptive estimation
of 1-D signal (corrupted by Gaussian noise) [25]. In this work
we only use it for the purpose of detecting variations and
finding similar samples. The use of LPA-ICI for variation
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detection has been used in some image denoising algorithms
such as SADCT [20] and BM3DSAPCA [8], to adaptively
detect the spatial variations of image value and collect similar
pixel samples. However, the proposed algorithm uses LPA-ICI
for signal variation detection in the PCA transform-domain.

Standard linear LPA tries to fit the signal y(n) locally with
polynomial functions of order m. Here, since we only use it
to detect variations and find neighborhood with high internal
similarity, we simply apply the zero-order polynomial fitting
(m = 0) to find a suitable window of size h (a window
containing Nh = 2h + 1 data points) where all the similar
signal in the window can be approximated by a constant
amplitude signal ŷ(n, h) = C . The computation of ŷ(n, h)
in LPA is related to the following loss function:

Jh(n) = 1

Nh

Nh∑
s=1

ρh(ns − n)(y(ns) − ŷ(n, h))2 (10)

where y(ns), 1 ≤ s ≤ Nh is the signal at the point in a window
of size h with n as its center, ρ(·) is a basic window function,
and ρh(·) = ρ(·/h)/h. For simplicity, we use the square
uniform window, where ρ(·) = 1 in [−1, 1], and ρ(·) = 0,
otherwise. So there is ρh(·) = 1/h in [−h, h], and ρ(·) = 0,
otherwise.

For a certain window size h, by minimizing the loss func-
tion, we have the estimate of y(n): ŷ(n, h) = 1

Nh

∑Nh
s=1 y(ns)

and its standard deviation std(n, h) = σ√
Nh

. So the confidence
interval of the estimate can be

D = [L, U ]
U = ŷ(n, h) + 
 · std(n, h)

L = ŷ(n, h) − 
 · std(n, h) (11)

where 
 is a threshold parameter.
Given a finite set of window size H = h1 < h2 < · · · < h J

starting from the minimum window size h1, for each window
we can use the LPA to get a estimate ŷ(n, hi ) and a corre-
sponding standard deviation std(n, hi ), thereby determining a
sequence of the confidence intervals D(i), 1 ≤ i ≤ J of the
biased estimates:

D(i) = [Li , Ui ]
Ui = ŷ(n, hi ) + 
 · std(n, hi )

Li = ŷ(n, hi ) − 
 · std(n, hi ) (12)

The ICI technique considers the optimal h to be the
maximum window length satisfying Li < Ui , where
Li = max{Li , Li−1} and Ui = min{Ui , Ui−1}, 1 < i ≤ J .

A simple illustration of the ICI rule is displayed in Fig. 5.
We can see that as the window size increases from h1 to
h4, the confidence intervals shrink and shift away because
of the decrease of variance and the increase of bias, which
leads to the shrinkage of the intersections between confidence
intervals. According to the ICI rule, h3 is the optimal window
size that achieves a favorable balance between variance and
bias.

Fig. 4 shows that LPA-ICI effectively detects the variations
in the noisy signal, where LPA-ICI assigns adaptively a small
window size to the drastically fluctuating segment and a large

Fig. 5. The Intersection of Confidence Intervals (ICI) rule.

window size for the segment with small fluctuations (in the
dashed boxes).

With the window size h and its center n being computed,
the segment y(ns) = f (ns) + w(ns), 1 ≤ s ≤ Nh is available.
The estimated auto-covariance of y(n) at point n can be
computed via a local average of this segment:

Ry(n) = 1

Nh

Nh∑
s=1

y(ns)
2. (13)

2) Suboptimal Wiener Filtering: Wiener filter has been
widely used to remove the noise in transform domain
efficiently [11], [12]. Given the estimated auto-covariance
Ry(n) at point n and auto-covariance of noise Rw = σ 2,
the estimate of the observation f (n) at n by Wiener filter
is:

f̂ (n) = ho y(n), (14)

where ho = Ry(n)−1 R f y(n) = [1 − go], go = Ry(n)−1 Rw .
However, the optimal Wiener filter often results in signal

distortion during noise reduction [24]. It is necessary for us
to avoid the signal distortion as much as possible in reducing
most of the noise for a satisfactory denoising performance.
To achieve a better control of noise reduction and signal
distortion, instead of using the optimal Wiener filter, we can
use a suboptimal Wiener filter by manipulating the Wiener
filter properly and automatically with an attenuation coefficient
α of go as in [24]:

hs = [1 − αgo], (15)

where α ∈ [0, 1] and α = 0 and 1 correspond to the case of
identity filter and Wiener filter, respectively. For simplicity, let
gs = αgo. Then the estimate of the observation f (n) at n by
the suboptimal Wiener filter is:

f̂ (n) = hs y(n), (16)

The determination of α is based on the two indexes
corresponding to the signal distortion and noise reduction,
respectively. For the suboptimal Wiener filter corresponding
to a certain α, the signal-distortion index can be defined as
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vsd(gs) � E{[ f (n)−hs f (n)]2}
σ 2

f
, and the noise-reduction index is

ξnr (hs) � σ 2
w

E{[hsw(n)]2} .
Then, we can obtain the optimal α by maximizing

the following discriminative cost function related to the
noise-reduction and signal-distortion indexes [24],

J (α) � ξnr (hs)

ξnr (ho)
− β

vsd(gs)

vsd (go)

= σ 2 + go Rwgo − 2σ 2go

σ 2 + α2go Rwgo − 2ασ 2go
− βα2, (17)

where β is an application-dependent constant and determines
the relative importance between signal preservation and noise
reduction. When β becomes larger, we have less signal dis-
tortion with less noise removal. We set β = 0.7 as in [24] to
achieve a good balance.

With the suboptimal Wiener filter above, we tackle each pi

from PR and obtain the corresponding processed result p̂i ,
i = 1, 2, · · · R. Then we have P̂R = [p̂1, p̂2, · · · , p̂R]T . We
can further obtain the denoised cluster using the reverse PCA
transform:

ŶR = URP̂R . (18)

V. OVERALL OF ACVA

Considering the high dimensionality of image data matrix,
we use a sliding window approach to avoid a significant
increase in the computational burden when implementing the
adaptive clustering for the image of increasing size. By using
a fixed-size sliding window, the computational burden of
the proposed algorithm within each window is comparatively
stabilized in a reasonable range. For a sliding window with
fixed size 128 × 128, the runtime of the Matlab codes on a
PC equipped with an Intel Core i5-4460 Quad-Core 3.2 GHz
CPU ranges from 4.0s to 16.0s approximately for different
noise levels.

As shown in Fig. 2, all the estimated patches from the slid-
ing windows at different portions of the image are aggregated
and averaged to obtain the final estimate. This sliding window
and aggregation approach has also been used in most block
matching based denoising algorithms and proves to be helpful
to further remove the residual noise in the estimated patches
thereby leading to the performance boost.

Overall of the proposed algorithm ACVA is summarized in
Algorithm 2.

VI. EXPERIMENTAL RESULTS

To validate all the algorithms comprehensively, we use
three performance metrics: peak signal-to-noise ratio (PSNR)
[39], structural similarity (SSIM) [40] and feature similarity
(FSIM) [41]. The PSNR regards the structural information
and the nonstructural information as the same in terms of
the contribution towards the performance, whereas SSIM
and FSIM put more emphasis on the structural information.
The images used for denoising experiments are displayed
in Fig. 6-7. We compare the proposed algorithm ACVA1

1The Matlab source code is available at http://www.escience.cn/people/
bjqin/research.html

Algorithm 2 Variation Adaptive Filtering Based on Adaptively
Clustered Patches(ACVA)

Fig. 6. The test datasets for Gaussian denoising experiments. Left:The
100 image samples from McGill dataset [37] (transformed from RGB into
gray images); Right: The 16 texture images from USC-SIPI dataset [38].

Fig. 7. The standard test images. Left: six standard gray scale images for
Gaussian denoising experiments; Right: four standard RGB images for camera
raw image simulation.

with: BM3D [11], BM3DSAPCA (SAPCA for short) [8],
WNNM [9], SLRD [10], SGHP [15], NCSR [42], and AC-
PT [6]. Moreover, the most representative deep learning based
denoising methods, i.e., the denoising convolutional neural
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TABLE I

THE AVERAGE DENOISING PERFORMANCE OF ACVA USING ADAPTIVE CLUSTERING WITH DIFFERENT
PARAMETERS ON TEST IMAGES FROM THE MCGILL DATASET

network with noise level specified (DnCNN-S) [43], is also
taken into consideration for comparison. All the algorithms
are set with default parameters for their best performances.

A. Gaussian Denoising

A) Test on the adaptive clustering: Table I shows how
the parameter LT and ρ in the proposed adaptive clustering
affect the denoising performance on 100 images from the
McGill dataset [37] at different noise levels, where the DF
described in the previous section is used. Denote the proposed
adaptive clustering method as AC(LT , ρ), where LT is the
maximum cluster size in a pair of clusters for computation of
between-cluster distance and ρ is the amplification coefficient.
Particularly, the adaptive clustering in AC-PT [6] can be
denoted as AC(0, 1). When setting LT ≥ 100 and ρ ≤ 0.9,
we see the increase of PSNR especially at high noise levels.
However, at high noise levels (σ = 50 and σ = 100), we can
see that as ρ decreases, the FSIM results decline gradually,
while the SSIM results peak at ρ = 0.7. When fixing
ρ = 0.7 and changing the value of LT from 0 to 400, we can
observe that setting LT = 200 can help achieve the highest
PSNR and SSIM performances as well as a satisfactory FSIM
performance. Thus, to achieve a robust denoising performance,
we set LT = 200 and ρ = 0.7.

B) Test on the variation adaptive denoising filter: With
the adaptive clustering parameters fixed, we further test the
proposed texture variation adaptive filter with different settings
on the 100 image samples from McGill dataset. Denote the
texture variation adaptive filter as VA(A, B), where A = W
for Wiener filter or A = SW for suboptimal Wiener filter, and
B = N for fixed window width or B = L for adaptive window
width based on LPA-ICI. Particulary, the setting VA(W, N)
corresponds to the DF in AC-PT [6]. Table II shows the
superior performance of VA(SW, L) to other settings in terms
of both PSNR and SSIM. As for the FSIM performance,
VA(SW, L) is only inferior to VA(SW, N), but VA(SW, N)
has the worst PSNR performance at high noise levels (σ = 50
and σ = 100) and therefore leads to a typical under-denoising.
In this way, VA(SW, L) shows a better balance between noise
reduction and feature preservation. In addition, it should be
noted that compared with the settings using traditional Wiener
filter (i.e., VA(W, N) and VA(W, L)), the suboptimal approach
VA(SW, L) can still lead to a boost of PSNR performance,

TABLE II

THE AVERAGE DENOISING PERFORMANCE OF ACVA USING TEXTURE

VARIATION ADAPTIVE FILTER WITH DIFFERENT SETTINGS ON TEST
IMAGES FROM THE MCGILL DATASET

Fig. 8. PSNR (dB) results of the proposed filter compared with singular
value thresholding methods at various noise levels σ . (a) and (b) are results
for House and Bark respectively.

which may imply the characteristics of over-denoising by the
traditional optimal Wiener filter.

We compare the proposed DF with noniterative SVT
methods in recent literature: GSURE [31], hard thresholding
method [44], and soft thresholding method [45]. As in Fig. 8,
our results show that the proposed DF is superior to these
noniterative SVT algorithms in denoising Bark and House
image.

C) Comparison with the state-of-the-art denoising algo-
rithms: The images used for test include 16 textured images
(as in Fig. 6) from the USC-SIPI Image Database [38], six
standard test images (Fig. 7), and 100 image samples from
McGill dataset (as in Fig. 6, already transformed into grayscale
images). We test the considered algorithms at different noise
levels σ = 10, 20, 30, 40, 50.
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Fig. 9. Denoising the Grid image at σ = 50: (a) Grid image, (b) Noisy block, (c) BM3D, (d) BM3DSAPCA, (e) WNNM, (f) SLRD, (g) DnCNN-S,
(h) SGHP, (i) AC-PT, (j) ACVA, (k) Noise-free block.

TABLE III

THE AVERAGE PSNR(dB), SSIM, FSIM RESULTS ON 16 IMAGES WITH
IRREGULAR TEXTURES FROM THE USC-SIPI DATASET

In Table III, we quantify the performances of nine com-
peting algorithms for the textured images with different noise
levels in terms of PSNR, SSIM and FSIM. From Table III,
we can see that at low noise level (σ = 10) the pro-
posed algorithm ACVA has a favorable PSNR performance
that is only inferior to DnCNN-S, and shows the high-
est SSIM and FSIM performances. When the noise level
increases, ACVA is superior to other algorithms in terms of
all the metrics, which proves that ACVA quantitatively out-
performs the other methods in denoising images with irregular
textures.

In Table IV, we further compare quantitative performance of
the nine algorithms on standard test images which have larger
flat area and less textured area. Table IV shows that ACVA can
still achieve competitive quantitative performance, especially

TABLE IV

PSNR(dB), SSIM AND FSIM RESULTS OF GAUSSIAN DENOISING
ON SIX WIDELY USED TEST IMAGES (THE GRAYSCALE

IMAGES SHOWN IN FIG. 7)

in terms of FSIM, over other algorithms on denoising natural
images.

In terms of visual texture-preserving performance, the pro-
posed method is also superior to the state-of-the-art denoising
methods. Fig. 9 shows the denoising results of Grid image
with noise level σ = 50. As can be seen from it, the proposed
method produces results closer to the noise-free image than
do other methods and achieves a better balance between noise
removal and detail preservation than AC-PT. Fig. 10 and 11
further illustrate the visual comparisons. From the zoom-in
denoising results of the noisy image Mandrill and Stream,
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Fig. 10. Denoising the Mandrill image at σ = 30 with image details in the zoomed areas (red and blue boxes): (a) Mandrill image, (b) Noisy block,
(c) BM3D, (d) BM3DSAPCA, (e) WNNM, (f) SLRD, (g) DnCNN-S, (h) SGHP, (i) AC-PT, (j) ACVA, (k) Noise-free block.

it can be observed that the proposed method outperforms other
methods in restoring the textures of the fur (in Fig. 10) and
water surface (in Fig. 11).

B. Camera RAW Image Denoising

1) Camera RAW Image Simulation: Four standard RGB test
images, specifically, Peppers, Lena, Baboon, and House are
selected for camera raw image denoising simulation. We adopt
the simulation method used in [46]. To transform the RGB
images into simulated raw images, we first scale the RGB
images (within the bounds of [0, 1]) to the domain of raw
images:

[r ′
i, j , g′

i, j , b′
i, j ]T = Rmax × [ri, j , gi, j , bi, j ]T (19)

where r , g, and b denote the signal in red, green, and
blue channels, respectively, i and j are the x-coordinate and
y-coordinate of any image pixel, respectively.

Then the pixels are further arranged into four subimages, R,
G1, G2, and B for simulation of the color filter array (CFA)
[47].

R = {r ′′
i, j = r ′

2i−1,2 j−1},
G1 = {g′′

i, j = g′
2i−1,2 j },

G2 = {g′′
i, j = g′

2i,2 j−1},
B = {b′′

i, j = b′
2i,2 j }. (20)

Finally, all the four subimages are arranged into a single image
to simulate the RAW image.

To better simulate the noise in the real RAW image,
we set the noise parameters α > 0, b = 0, p = 0
as [46]. Based on Poisson-Gaussian noise reduction scheme
described in Section II, we apply the proposed algorithm
to denoise R, G1, G2, and B separately and then com-
pute the average PSNR (SSIM and FSIM) results for
evaluation.

Table V compares the quantitative performance of nine
competing algorithms on simulated camera RAW images.
We can see that the proposed algorithm is superior to all
other algorithms in terms of SSIM and FSIM on average.

TABLE V

PSNR (dB), SSIM, FSIM RESULTS OF CAMERA RAW IMAGE
SIMULATION ON THE RGB IMAGES SHOWN IN FIG. 7

Specially, for image House that has more flat area than other
images, ACVA still shows the highest SSIM and FSIM results
at the high noise level (α = 200) and competitive quantitative
performance at the low noise level (α >= 400). For the
PSNR results, ACVA outperforms BM3D, NCSR, SGHP and
DnCNN-S on average. Since the source code of the denoising
method EFBMD [46] is unavailable, we can only compare
the proposed algorithm with EFBMD according to the results
displayed in [46] which uses the same test dataset and sim-
ulation methods. As the denoising method EFBMD [46] is
inferior to NCSR in terms of the average PSNR results, we can
conclude that ACVA is also better than EFBMD in terms of
PSNR results. For the SSIM results on the image Baboon,
we see that while EFBMD only perform well at low noise level
(α = 1000), ACVA has a better SSIM performance at all the
higher noise levels α < 1000. We cannot compare the FSIM
performance because [46] does not list the corresponding
results.
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Fig. 11. Denoising the Stream image at σ = 25 with image details in the zoomed areas (red boxes): (a) Stream image, (b) Noisy block, (c) BM3D,
(d) BM3DSAPCA, (e) WNNM, (f) SLRD, (g) DnCNN-S, (h) SGHP, (i) AC-PT, (j) ACVA, (k) Noise-free block.

Fig. 12. Performance comparison on the red channel of Baboon image with image details in the zoomed areas (red boxes): (a) The red channel, (b) Noisy
block (α = 200), (c) BM3D, (d) BM3DSAPCA, (e) NCSR, (f) WNNM, (g) DnCNN-S, (h) SGHP, (i) AC-PT, (j) ACVA, (k) Noise-free block.

Fig. 13. Performance comparison on the blue channel of Lena image with image details in the zoomed areas (red boxes): (a) The blue channel, (b) Noisy
block (α = 400), (c) BM3D, (d) BM3DSAPCA, (e) NCSR, (f) WNNM, (g) DnCNN-S, (h) SGHP, (i) AC-PT, (j) ACVA, (k) Noise-free block.

As for the visual texture-preserving performance, ACVA
also outperforms the state-of-the-art denoising algorithms.
Figs. 12-13 compare the bottom-left corner of the denoising
results of image Baboon and Lena. From the zoom-in area,
the proposed method outperforms other methods in restoring
the special textures of the fur (in Fig. 12) and doorframe
(in Fig. 13). In addition, as shown in [46], EFBMD is

also inferior to ACVA in preserving the fur texture at the
bottom-left corner of image Baboon.

2) Denoising on Real RAW Images: The RAW image of size
3744×5616 is captured by a Canon EOS 5D Mark II. We cut
down a 402 × 402 square from the raw image for denoising
tests. The noise parameters (α and b) in Poisson-Gaussian
noise model are estimated by the method in [26]. We assume
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Fig. 14. Denoising the real camera raw image with image details in the zoomed areas (red boxes): (a) Noisy image, (b) Small sample cut down from the
blue square, (c) BM3D, (d) BM3DSAPCA, (e) NCSR, (f) WNNM, (g) SLRD, (h) DnCNN-S, (i) SGHP, (j) AC-PT, (k) ACVA.

the noise level is invariant across the whole image. To avoid
over-estimate of noise level, we select the top-left 200 × 200
flat area, estimate its R, G1, G2, B subimage separately, and
adopt the minimum estimates of α and b, respectively. After
applying the GAT on the RAW image based on the estimated
parameters, we denoise the real camera raw image using
the considered algorithms directly. To visualize the denoised
image, we adopt the method in [47] to transform the results
into RGB images.

Fig. 14 shows that ACVA protects zoom-in details (such
as singular points and textures) best compared with other
algorithms. Specifically, we can also find that there is a
noisy black dot mistakenly preserved by AC-PT. And serious
color distortion can be observed in the results by SGHP
and DnCNN-S, while BM3D, BM3DSAPCA, NCSR, SLRD,
and WNNM just blur the isolated white points and brown
texture. The serious color distortion by DnCNN-S implies that
this state-of-the-art deep learning based denoising algorithm
distorts heavily the special textures resulted from the CFA,
and how to control this kind of distortion remains an unsolved
problem.

VII. CONCLUSIONS

In this paper, we have proposed a texture-preserving non-
local denoising algorithm ACVA. In ACVA, an adaptive clus-
tering method is designed to adaptively and robustly cluster
similar patches. A state-of-the-art PCA-based denoising filter
is proposed in a transform-domain texture variation adaptive
filtering approach to perform a texture-preserving denoising of
each cluster. The denoising performance of ACVA is further
improved via a sliding window and aggregation approach.
When compared with the existing PG techniques (especially
the adaptive clustering method in AC-PT), the proposed adap-
tive clustering method achieves more robust performance at the
high noise level. Meanwhile, the proposed DF shows superior
denoising performance to other PCA (or SVD) based DFs.

ACVA achieves satisfactory texture-preserving Gaussian
denoising performance both quantitatively and visually. Espe-
cially on images with irregular textures, ACVA can outperform
all the other denoising algorithms tested here in terms of

PSNR, SSIM and FSIM results. The noise removal results
for camera raw images containing special textures of CFA
further verify ACVA’s excellent texture-preserving Poisson-
Gaussian denoising performance for real application, while the
deep learning based denoising algorithm DnCNN works [43]
poorly on the real images with CFA patterns that have irregular
or stochastic textures. The future work will explore potential
benefits of ACVA for improving the overall performance in
processing low SNR and low contrast images with irreg-
ular textures, such as OCT vessel images [23], low-dose
X-ray vessel images [48]–[50] and fluorescence microscopy
images [51], [52].
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