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Motion-Robust Multimodal Heart Rate Estimation
Using BCG Fused Remote-PPG With Deep Facial
ROI Tracker and Pose Constrained Kalman Filter

Yiming Liu , Binjie Qin , Member, IEEE, Rong Li , Xintong Li ,
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Abstract— The heart rate (HR) signal is so weak in remote
photoplethysmography (rPPG) and ballistocardiogram (BCG)
that HR estimation is very sensitive to face and body motion
disturbance caused by spontaneous head and body movements
as well as facial expressions of subjects in conversation. This
article proposed a novel multimodal quasi-contactless HR sensor
to ensure the robustness and accuracy of HR estimation under
extreme facial poses, large-motion disturbances, and multiple
faces in a video for computer-aided police interrogation. Specif-
ically, we propose a novel landmark-based approach for a deep
facial region of interest (ROI) tracker and face pose constrained
Kalman filter to continuously and robustly track target facial
ROIs for estimating HR from face and head motion disturbances
in rPPG. This motion-disturbed rPPG signal is further fused
with a minimally disturbed BCG signal by the face and head
movements via a bank of notch filters with a recursive weighting
scheme to obtain the dominant HR frequency for final accurate
HR estimation. To facilitate reproducible HR estimation research,
we synchronously acquire and publicly share a multimodal data
set that contains 20 sets of ECG and BCG signals as well as
uncompressed, rPPG-dedicated videos from ten subjects in a
stable state and large-motion state (MS) without and with large
face and body movements in a sitting position. We demonstrate
through experimental comparisons that the proposed multimodal
HR sensor is more robust and accurate than the state-of-the-
art single-modal HR sensor solely with rPPG- or BCG-based
methods. The mean absolute error (MAE) of HR estimation is
7.13 BPM lower than the BCG algorithm and 3.12 BPM lower
than the model-based plane-orthogonal-to-skin (POS) algorithm
in the MS.
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I. INTRODUCTION

HEART rate (HR), HR variability, and respiratory
rate (RR) are important physiological indices [1], [2]

of a person’s health and mental state. The more accurate and
timely we can estimate the HR and HRV, the more we can
fully utilize these physiological indices to help estimate the
mental state. By utilizing these physiological indices from
emotional arousal, the polygraph was first invented by James
McKenzie [2]. Usually, modern polygraphs record breathing
patterns, cardiovascular activities, and electrodermal responses
through direct person-to-device contact, which is inconvenient
for use in real applications. In addition, the cost of poly-
graph equipment is high. Therefore, there is an increasing
need to develop a modern polygraph system with contactless
physiological sensors that are cost-effective and extremely
easy to use. Several contactless or quasi-contactless physi-
ological sensors, such as the RGB camera for remote pho-
toplethysmography (rPPG) sensing and a fiber-optic cushion
for ballistocardiogram (BCG) detection, can be expeditiously
applied to computer-aided police interrogation for the best
balance of smart public security construction and personal
privacy protection. Fig. 1 shows the typical HR waveform from
an electrocardiogram (ECG) signal, PPG, and BCG signal.
There is a high correlation between the different peak-to-peak
intervals of ECG, PPG, and BCG signals, i.e., RR interval,
PP interval, and JJ interval. The RR interval is often used
as a reference standard [3] for evaluating the PP interval from
PPG and the JJ interval from BCG in performing HR and HRV
calculations. In actual scenes, the suspect sitting face-to-face
during police interrogation is completely free to various types
of body movements such that the target physiological signal
acquired from these sensors will be dramatically affected by
motion artifacts. Therefore, accurately extracting the target
physiological signals from the complex motion artifacts is a
challenging problem in the real process of police interrogation.
Sadek

BCG cushion is a noninvasive HR measurement method
that measures the body movements produced by the blood

1557-9662 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on March 05,2021 at 01:53:57 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7016-6415
https://orcid.org/0000-0001-7445-1582
https://orcid.org/0000-0002-1598-1871
https://orcid.org/0000-0002-1755-3483
https://orcid.org/0000-0001-7029-4604
https://orcid.org/0000-0001-5960-6611
https://orcid.org/0000-0001-7091-2062
https://orcid.org/0000-0002-9484-8840


5007215 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

Fig. 1. Examples of typical ECG, PPG, and BCG physiological signals with
high correlation among their peak-to-peak intervals.

that is ejected and moved during each cardiac cycle [4]. The
BCG signal is a combination of cardiac activities, respiratory
activities, and body movements such that the BCG signal can
simultaneously reveal a person’s HR and RR. In addition to the
BCG technique, the rPPG-based method is an emerging branch
of PPG, which is a simple and low-cost video-based biomon-
itoring technique for detecting cardiorespiratory activities by
monitoring the illuminance variation in diffuse reflection [5]
in the face image of video sequences. The periodic variation
in the illuminance is caused by a change in the amount of
hemoglobin molecules and proteins in blood vessels to directly
reflect the HR information. Different from traditional PPG,
where a sensor is deployed close to the tissue, rPPG needs
to robustly and accurately select an effective facial region of
interest (ROI) from large face and head movements in real time
by image recognition technology. Due to the above-mentioned
different operating principles, the BCG is thus sensitive to
body movements, whereas the rPPG is the most susceptible to
the face and head movements during face-to-face conversation
in a sitting position.

For BCG, Sadek and Biswas’s [4] “maximal overlap dis-
crete wavelet transform” (MODWT)-based BCG algorithm has
been proved to achieve more accurate HR estimation than
fast Fourier transform, cepstrum, and autocorrelation-based
methods. However, in the motion state (MS), the amplitude
of the force signal caused by body movement far outweighs
the pulsatile signal. HR is rarely detected by the tradi-
tional model-based method. To solve this problem, machine-
learning-based methods have been proposed. For example,
Alivar et al. [6] proposed a two-stage algorithm using a
sequential detection algorithm to determine whether the BCG
signal frame is corrupted by motion and building a parametric
model (autoregressive model, Wiener smoother estimator) of
the BCG signal to reconstruct the motion-corrupted signal.
To separate the target HR signal from the large-motion artifacts
in a single-channel BCG sensor, the fusion of multiple channel
BCG sensors was implemented to benefit the extraction of
sensitive pulsatile signals from large-motion artifacts. For
instance, Brüser et al. [7] used a Bayesian fusion approach
on multiple BCG signal sources to achieve a more accurate
HR estimation. Inspired by the above works of BCG and
rPPG with their differential sensitivities to different motion

disturbances, the proposed contactless rPPG sensor explores
the fusion of BCG signal measurements for accurate and
timely HR estimation.

To the best of our knowledge, this is the first study to
propose a multimodal quasi-contactless HR sensor by fus-
ing optical-fiber-based BCG into motion-robust video-based
rPPG, which is implemented by proposing a landmark-based
deep facial ROI tracker (DFT) and pose constrained Kalman
filter (KF) to enhance the performance of rPPG with further
motion correction of BCG fusion for accurately estimating
the HR from various motion disturbances. This DFT tracker
gets the full benefit of large-data-driven deep learning strategy
that can easily access to large amount of annotated video data
for human-face tracking in the research field of computer
vision. Compared with the limitation of small amount of
annotated physical data for purely data-driven rPPG methods
[8]–[10], the proposed method combines data-driven DFT with
model-driven rPPG method [11] to ensure generalization and
robustness of the facial ROI tracker for accurately estimating
HR from head-motion-disturbed rPPG signals. The contribu-
tions of this article are summarized as follows.

1) To our best knowledge, this is the first work to propose
a BCG-rPPG multimodal HR sensor (called DFT-KF-
plane-orthogonal-to-skin (POS) multimodal HR sensor)
by exploiting the differential sensitivities of BCG and
rPPG to body movements and head and face movements
in a sitting position. This multimodal sensor can be
smoothly run from a stable state (SS) to a large-MS
for accurately estimating HR from various motion dis-
turbances for computer-aided police interrogation.

2) We propose a new facial ROI tracker via integration of
data-driven and model-based methods to accurately track
the target facial ROIs for model-based rPPG. Specif-
ically, a DFT is implemented by integrating a deep-
learning-based face tracker and its landmark alignment,
which is further compensated for landmark position
errors via a face pose constrained KF of moving land-
marks for correcting abrupt motion disturbances of facial
ROIs to obtain a motion-robust rPPG signal.

3) We further exploit a bank of FIR notch filters to estimate
the instantaneous frequency of BCG and rPPG signals
in a real-time manner. The specific outputs of the filter
bank are fused in a recursive weighting scheme to
obtain the dominant HR frequency for final accurate
HR estimation from the two sources of input signals.
Specifically, we map the output-to-input ratios of all
notch filters into adaptive weights via an exponential
function and perform a weighted summation of the
dominant frequencies corresponding to all notch filters
to obtain the final HR of two signals.

4) We synchronously build a multimodal HR database that
consists of 20 sets of data from ten subjects in stable
and large MSs without and with large face and head
movements as well as body movements in the sitting
position. To the best of our knowledge, this is the first
data set that synchronously records ECG, BCG original
signals, and rPPG-dedicated video sequences for HR
estimation with different amplitudes and time scales of
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motion disturbances as well as different movement types
introduced in the data set.

This article is organized as follows. We review the related
works on contactless HR estimation in Section II. The design
of DFT and pose constrained ROI landmark KF for rPPG as
well as motion-artifact correction via BCG fusion are pre-
sented for HR estimation in Section III. An illustration of the
experimental results is presented in Section IV. Conclusions
and discussions on our work are presented in Section V.

II. RELATED WORKS

HR estimation based on rPPG needs to track several areas
of facial skin, such as the forehead and cheek regions, which
are denoted as ROIs, to obtain high-quality rPPG signals [12].
Subsequently, the light intensities of the spatially averaged
pixel values in the facial ROIs are filtered to recover the
rPPG signal. However, when the suspect’s face, head, and
body move, it is more difficult to extract HR signals from
the contactless rPPG compared to contact PPG measurement
methods for the following reasons: 1) it is difficult to ensure
that face ROIs are always correctly identified and tracked in
rPPG measurement and 2) in rPPG measurement, the relative
position and orientation between the camera and moving facial
tissue change frequently with the distance being largely varied
such that the radiant flux on the ROI and its camera response,
as well as disturbances from light sources, are largely varied to
introduce serious motion artifacts in the distorted rPPG signal.
To solve these two motion-caused problems, more intelligent
facial ROI trackers and motion-artifact suppression for rPPG
are worth studying in this article.

To achieve an intelligent facial ROI tracker, face detec-
tion [13] must first be implemented to determine where the
target face is located when there are occasionally several
faces or face occlusions in the video sequence. After face
detection, the whole facial region should be continuously
tracked via object tracking algorithms. Among these object
tracking methods, Kanade–Lucas–Tomasi (KLT) [14] based
on sparse optical flow vectors from good features (such as
corners) in two subsequent frames of a video can achieve fast
face tracking after the manual definition of the target face in an
environment where the brightness of the object is assumed to
remain invariant. Some rPPG works [15]–[17] used only KLT
to track a person’s face. However, due to optical flow equations
relying on the first-order Taylor expansion and easily breaking
down when large motions occurred between sequential frames,
KLT tracking accuracy on unsolved challenges inherent in
the optical flow technique [18], such as large face movement
and partial occlusion cases as well as handling textureless
facial areas, is not ideal for estimating motion-robust HR for
rPPG [16], [17].

By introducing powerful multicue and multidimensional
features, including both handcrafted and deep neural net-
work features, discriminative correlation filtering (DCF) algo-
rithms [19], [20] have been proved to achieve more accurate
tracking but are somewhat more computationally expensive
than others. Therefore, an efficient convolution operator (ECO)
algorithm [21] for object tracking was proposed with a com-
pact generative model and factorized convolution operator

to cluster historical frames and employ dimension reduction
to reduce memory and time complexity. Some researchers
have demonstrated that ECO tracking accuracy and real-time
performance are superior to previous object tracking algo-
rithms, which is then an important motivation of this work for
integrating an ECO-based face tracker into facial ROI tracker
design for motion-robust rPPG.

After the face tracker obtains the data matrix of the face,
the desired facial ROIs containing the high-quality rPPG
signal should be continuously and accurately identified or
tracked. Traditional methods generally use face segmentation
[22], [23] and face alignment [24] to achieve facial ROI track-
ing. Usually, the entire face generated by face segmentation is
denoted as ROI. This method is simple in principle and fast
in implementation. Its core idea is to define an “explicit skin
cluster” classifier that expressly defines the boundaries of the
skin cluster in color space [22]. However, when illumination
is locally uneven and the background color is close to the skin
color, the ROI tracked by this segmentation method is usually
incoherent and contains noisy background areas. Pursche et al.
[25] used a CNN to select ROI and compared the effectiveness
of network based on a different number of training samples.
The ROIs calculated by CNN lead to significantly better and
faster results compared to ROIs from classical approaches. For
face alignment, Kazemi and Sullivan [24] used an ensemble of
regression trees (ERT) to estimate the landmark positions of
faces. The facial ROI was then tracked from the landmark
coordinates. The ERT optimized the sum of square error
loss and naturally handled missing or partially labeled data.
It achieved face alignment in milliseconds with high-quality
predictions. To guarantee face alignment accuracy in extreme
face pose or occlusion situations, a recently proposed practical
facial landmark detector (PFLD) [26] was designed with a
dual network structure to implement a backbone network for
predicting landmark position and used an auxiliary network
for face pose determination for regularizing face landmark
localization in the backbone network. However, when the
face has large movement, the landmark localization by the
alignment-based method still has errors and introduces abrupt
shifts in the facial ROI. The Kalman filter (KF) [17] is assumed
to be capable of modeling head motion for correction of
landmark coordinate errors of the landmarks generated by
PFLD. Therefore, we are inspired to conduct a deep study
on this facial ROI tracking problem in large face movement
disturbances.

The PPG- and BCG-based robust HR measurement algo-
rithms with motion-artifact suppression can be divided into
three categories: the blind source separation (BSS)-based
algorithm, and the model-based and deep-learning-based algo-
rithms. BSS refers to extracting a source signal from a mixed
signal without knowing the mixing process in advance. Among
BSS algorithms, independent component analysis (ICA) is a
commonly used method. Some ICA-based methods are applied
to rPPG to estimate HR, and the accuracy of experiments
proves their feasibility. However, it assumes that the dis-
tribution of different signals is statistically independent and
non-Gaussian [27]. To calculate the decomposition matrix,
sufficiently long signal data is necessary for data analysis.
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Therefore, it cannot guarantee real-time and high-accuracy
performance for real applications.

The model-based algorithm uses prior knowledge of dif-
ferent color components to achieve cardiac signal separation.
De Haan and Jeanne [28] proposed the chrominance-based
(CHROM) method, which needs a constant “skin-tone” vector
under white light to help suppress the effect of motion dis-
turbance. This constant vector was experimentally determined
and is not invariant in different experimental environments.
Therefore, the accuracy of estimating HR in different exper-
imental environments varies greatly. Afterward, the blood-
volume pulse vector-based (PBV) method [29] was proposed
to improve motion robustness. The PBV method utilized the
blood volume change signature to distinguish pulse-induced
color changes from motion artifacts. The covariance matrix
of the color data matrix should be calculated in the PBV
method. Then, the matrix is inverted for subsequent calcu-
lation. However, if the matrix is not invertible, the algo-
rithm cannot complete the extraction of the cardiac signal.
Later, Wang et al. [11] compared the previous BSS-based and
model-based algorithms and proposed a new model-based
rPPG algorithm called POS, which outperformed other algo-
rithms via experimental comparison in recent review work [5].

Most deep learning methods [8]–[10] are inherently
data-driven and supervised such that they depend on various
large labeled data sets to accommodate the diversity of data
sets acquired from different video devices and the large
variation in various head motions and lighting conditions.
For example, deep skin segmentation [10] via nonskin and
skin classification requires considerable human effort and
training data to implement skin labeling and annotation for
HR estimation. The learned mapping from these training data
sets to the desired skin segmentation prediction is achieved by
setting large parameters of deep neural networks to minimize
the specific distance measure (or loss function) between the
ground-truth label and the deep model’s predicted segmenta-
tion. This learned mapping over training examples is thus very
dependent on the trained data set and labeling such that it is
insensitive and ineffective to the newly acquired data sets with
their specific skin properties, challenging light conditions, and
unexpected large-motion disturbances. Therefore, there may be
some tradeoff between motion robustness and measurement
accuracy for newly acquired data sets from real scenarios.
Other distortion artifacts, such as the artifacts caused by video
compression, can be referred to in [30]. A detailed comparison
and review of the rPPG algorithm can be seen in the newly
published review papers [5], [31], [32]

Many existing methods have reported their perfor-
mance using private databases that only consist of videos
and gold-standard signals, such as ECG or PPG. The
MAHNOB-HCI database [33] was first used for remote
HR estimation. Face videos, audio signals, eye gaze,
and peripheral/central nervous system physiological signals,
including HR with small head movement and facial expres-
sion variation under laboratory illumination, were recorded.
Stricker et al. [34] released the PURE database consisting
of 60 videos from ten subjects, in which all the subjects were
asked to perform six kinds of movements, such as talking or

head rotation. Reference data were captured in parallel using
a finger clip pulse oximeter. Hsu et al. [35] released the PFF
database, consisting of 104 videos of ten subjects, in which
only small head movements and illumination variations were
involved and ground-truth results were recorded using the
MIO Alpha II wrist wearable device. These two databases are
limited by the number of subjects and recording scenarios,
making them unsuitable for building a real-world HR estima-
tor. Soleymani et al. [33] built a large-scale multimodal HR
database (named VIPL-HR), which consists of 2378 visible
face videos and 752 NIR face videos from 107 subjects. Three
different recording devices (RGB-D camera, smartphone, and
web camera) were used for video recording, and the PBV
signal of the fingertip oximeter served as the ground truth.

III. MATERIALS AND METHODS

The proposed multimodal quasi-contactless HR sensor fuses
two different physiological sensors to estimate HR. Specif-
ically, a DARMA optic fiber-based BCG sensor with a
sampling rate of 50 Hz and an FLIR BLACKFLY BFS-U3-
19S4 RGB camera are used to build our multimodal HR
sensor and acquire the corresponding multimodal data set. The
duration of each sample is 30 s, and ten volunteers are involved
in the acquisition of these multimodal data.

For a better explanation, we generally divide motion distur-
bances into two cases in the acquisition of these multimodal
data sets: the SS without obvious large body and head move-
ment and the MS with the subject’s body moving and the head
varying yaw angle being exceeding 30◦ or varying coordinates
exceeding 30 pixels. Specifically, in the MS, the subjects
played a game called “Mafia” [36], in which the “mafia” has
to cheat the “detectives” and “ordinary citizens” and vote on
a player to eliminate in each round. The players communi-
cate and function in a way that resembles real interrogation
situations. In the discussion part of the game, every “mafia”
member should make a statement. When they lied or were
queried, large emotional fluctuations may emerge, which led
to large body motions and large variations in head movements
and facial expressions. The video sequences capturing the face
image in 25 frames/s with a resolution of 640 × 480 were
recorded by a camera. The experimental results were compared
with ground-truth HR acquired by Heal Force’s three lead
PC-80B ECG Monitor. The damaged segments in the ECG
signal (for example, due to body movement or equipment
motion) were manually commented and deleted to ensure the
correctness of the reference value. In the experiment, the ref-
erence ECG signals that were eliminated did not exceed 5%
of the total signal. The whole framework of the motion-robust
quasi-contactless HR sensor is schematically shown in Fig. 2.

A. Motion-Robust rPPG via DFT and
Face Pose Constrained KF

In general, rPPG is very dependent on facial ROI selection
for HR estimation. With the facial ROI selection strategy
mentioned in Section II, we used the face-alignment-based
ROI algorithm. The proposed motion-robust rPPG is shown
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Fig. 2. Framework of a multimodal motion-robust quasi-contactless HR
sensor.

in Fig. 3. The proposed rPPG sensor consists of three impor-
tant submodules that are listed as follows.

1) A DFT is implemented via the integration of two
subsequent modules as follows. A deep face tracker
selects and tracks the target face image matrix via
the face detector and the state-of-the-art ECO tracker,
and the sequential face image matrix in the video is
then aligned with the recently introduced PFLD facial
landmark detector network [26] to achieve facial ROI
tracking.

2) This robust DFT further corrects the sequential face
landmarks’ error using Kalman filtering of landmark
coordinates and prior constraints of face pose informa-
tion.

3) The POS method [11] is utilized to extract the pulsatile
signal from the target pixels in the facial ROIs.

1) Deep Face Tracker: Our deep face tracker is built on
the classical face detector and the recently introduced object
tracker. Specifically, an image matrix containing the target face
is selected semiautomatically. Then, a classical face detector
via the OpenCV Haar classifier based on the Viola–Jones
algorithm [13] is utilized to detect whether the selected area
contains faces. In the real process of police interrogation,
nontarget faces may be captured during video recording. This
may cause an incorrect selection of the target facial ROI.
Traditional face detection methods have no way to determine
which face belongs to the concerned suspect/witness. To utilize
the close correlation of target faces in sequential video frames
to deal with nontarget face disturbances, we believe that cor-
relation filtering-based tracking algorithms can continuously
track target faces at rapid speeds with high accuracy.

Considering the robustness in situations with large head
rotation and real-time requirements of the desired facial
tracker, we utilize the online ECO [21] tracker once we acquire
the target face central coordinates of the “face rectangle” and
its length and width in the initial frame by the Viola–Jones
algorithm. We input the original image as well as the central
coordinates, length and width of the head region into the ECO
tracker, which will have a high response to the target face and
a low response to the background in the next few frames.

As a discriminative correlation filter-based tracking method,
the ECO tracker adopts a continuous convolution operator
tracker (C-COT) as the baseline to extract multiresolution
facial feature maps by performing convolutions in the contin-
uous domain without the need for explicit resampling. With

TABLE I

BACKBONE NET CONFIGURATION. EACH LINE REPRESENTS A SEQUENCE
OF IDENTICAL LAYERS, REPEATING n TIMES. ALL LAYERS IN THE

SAME SEQUENCE HAVE THE SAME NUMBER c OF OUTPUT

CHANNELS. THE FIRST LAYER OF EACH SEQUENCE HAS A

STRIDE s . THE EXPANSION FACTOR t IS ALWAYS APPLIED
TO THE INPUT SIZE

the advantage of C-COT’s target detection scores predicted as
a continuous function enabling accurate subgrid localization,
ECO constructs a filter as a linear combination of basis
filters and introduces a factorized convolution operator for a
continuous T-periodic multichannel convolution filter to jointly
learn the basis filter and coefficients in matrix factorization
optimization. This factorization strategy reduces the number
of parameters in the deep facial tracker, which is further
combined with a compact generative model of the training
sample distribution to drastically reduce computational com-
plexity while enhancing sample diversity. The state-of-the-art
facial tracking performance is further assured by a simple yet
effective deep model update strategy that reduces overfitting
to recent facial object samples.

2) DFT With Pose Constrained KF: After the deep face
tracker successfully finds the matrix containing the target face
in the sequential input images, the facial matrix is passed
into the deep landmark detector called PFLD [26] for facial
ROI generation. Specifically, the facial landmarks are first
predicted by a backbone CNN-based PFLD network, where
the multiscale features from the global structures of the human
face, such as symmetry and spatial relationship between eyes,
mouth, and nose, are directly extracted via several convolu-
tional layers and used for landmark prediction. To overcome
the bottleneck in terms of processing speed and model size in
the backbone network, a simple/small MobileNet architecture
built on depthwise separable convolution filters is adopted
to replace the traditional convolution operation in PFLD to
significantly reduce the computational load and accelerate the
speed of the backbone network. To further reduce the number
of feature maps without accuracy degradation, the backbone
network is compressed by adjusting the width parameter of
the network. Furthermore, a proper auxiliary network takes
an identical standard frontal face and its 11 landmarks as
references of each face and its corresponding landmarks to
estimate the face rotation matrix and then computes three
Euler angles, including yaw, pitch, and roll angles, to make
the landmark localization stable and robust. Table I provides
the configuration of the backbone network.
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Fig. 3. Data processing flowchart for the proposed motion-robust rPPG with a DFT and face pose constrained KF.

Fig. 4. Facial ROI identification by face landmarks and three degrees of
freedom (roll, pitch, and yaw) of the face in 3-D space.

With the abovementioned face landmark detection
and alignment, we can continuously and consistently
obtain 98 landmark points on each target face image from
the video sequence to determine the facial ROIs. Here, two
pieces of cheek skin under the eyes and one piece of forehead
skin are chosen as the target facial ROIs because they have
proved to contain good rPPG SNR signal quality [37].
As shown in the blue box in Fig. 4, we use numbers 34, 76,
82, and 45 landmarks to determine the horizon-axis endpoint
coordinate of the cheek skin ROI rectangle. We use numbers
52 and 54 landmarks to determine the vertical-axis endpoint
coordinates of the cheek skin ROI rectangle. Number 37 and
42 landmarks are the endpoints of the bottom edge for
the forehead ROI square. The square’s side length is set
as the coordinate distance between the numbers 37 and
42 landmarks on the horizon axis.

Although the advanced face alignment method in DFT
has become quite accurate at predicting the facial landmark
locations, they do not simultaneously assure the robustness and
accuracy of their predicted locations from sudden large head
motion and various lighting conditions as well as large occlu-
sion in real applications. Although we use facial landmarks
to help locate the ROIs, there are still some measurement
errors caused by landmark fluctuation. For a robust estimation
method from a series of noisy measurements, KF [17], [38]
is a highly efficient recursive filter that can estimate the state
of a dynamic system from a series of incomplete and noisy
measurements. A typical example of the KF is to predict the
coordinates and velocity of an object’s position from a limited
set of noisy observations of its position. We thus apply a
KF as a face motion estimation model to correct the facial
landmarks (No. 34, 37, 42, 45, 52, 54, 76, and 82) for facial
ROI correction in video sequences.

Specifically, KF is used to predict the state at time t by the
state at time t − 1. For real-time landmark tracking, the state
of specific landmark positions xk can be assumed to have
continuous first- and second-order derivatives, denoted by ẋk

and ẍk, respectively, so that the state of position and velocity
vectors varies between frames in terms of changes in velocity
and acceleration as follows:

⎧⎨
⎩xk = xk−1 + hẋk−1 + 1

2
h2ẍk−1

ẋk = ẋk−1 + hẍk−1.
(1)

In implementing the motion-robust rPPG sensor, the posi-
tions of eight landmarks related to ROI tracking are subject
to the following KF. The task of KF is to estimate the values
of state vectors Sk = [xk, ẋk] given observation of vector Mk .
We assume that the random tracking process to be estimated
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for landmarks can be modeled in the following state equation:

sk =

⎡
⎢⎢⎢⎣

xk

ẋk

yk

ẏk

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

1 h 0 0
0 1 0 0
0 0 1 h
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎣

xk−1

ẋk−1

yk−1

ẏk−1

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

h2

2
0

h 0

0
h2

2
0 h

⎤
⎥⎥⎥⎥⎥⎦
[

ẍk−1

ÿk−1

]

+ wk

= Ask−1 + Buk + wk . (2)

The landmark observation (measurement) of the tracking
process is assumed to occur at discrete points in time in
accordance with the following measurement equation:

mk = Hksk + vk (3)

where sk is the predicted facial landmark state vector
[xk, ẋk, yk, ẏk] in frame F, sk−1 is the existing facial landmark
state vector for frame F − 1 (current frame), and uk denotes
the acceleration vector of the landmark in frame F, which is
always ignored. wk and vk are assumed to be a white sequence
and are known as the process noise and measurement noise,
respectively, of the landmark in frame F; A is the usual state
transition matrix reflecting the effect of the previous state on
the current state. The matrix B is the optional control input,
which is always ignored with the acceleration vector uk of
the landmark. The matrix H in the measurement (3) gives
a noiseless connection between the landmark state s and the
measurement m in the current frame of the video sequence.
The covariance matrices for wk and vk are given by

E
[
wkwT

i

] =
{

Qk, i = k

0, i �= k
(4)

E
[
vkvT

i

] =
{

Rk, i = k

0, i �= k
(5)

E
[
wkvT

i

] = 0, for all k and i (6)

where 0 denotes a matrix with zero elements. The respective
covariance matrices, Qk and Rk , are assumed to be known.

By initializing KF filtering at some point tk , we have
a prior landmark position estimate denoted as ŝ−

k and the
corresponding error ê−

k = sk − ŝ−
k having its prior covariance

matrix P−
k = E[ê−

k ê−
k

T ] = E[(sk − ŝ−
k )(sk − ŝ−

k )
T ]. With the

prior estimate ŝ−
k , we now use the measurement mk to improve

the prior estimate. To this end, we adopt the following update
recursion:

ŝk = ŝ−
k + Kk

(
mk − Hk ŝ−

k

)
(7)

where the updated (posterior) estimate is equal to the prior
estimate plus a correction term, which is proportional to
the error in predicting the newly arrived observation vector
and its prediction based on the prior estimate. Matrix Kk ,
known as the Kalman gain, controls the amount of correction,
and its value is determined to minimize the following mean
square error J (Kk) derived from the trace of posteriori error
covariance matrix associated with the updated estimate since

the trace is the sum of the mean square errors in the estimates
of all the elements of the state vector:

J (Kk) ≡ E
[
eT

k ek
] = trace{Pk} (8)

where

Pk = E
[
ekeT

k

] = E[(sk − ŝk)(sk − ŝk)
T ]. (9)

After substituting (4) into (8) and then substituting the
resulting expression for ŝk into (9) as well as using P−

k =
E[(sk − ŝ−

k )(sk − ŝ−
k )

T ] as a prior estimation error, which is
uncorrelated with the current measurement error vk , we obtain
the following result:
Pk = E

{[(
sk − ŝ−

k

)− Kk
(
Hksk + vk − Hk ŝ−

k

)]
× [(sk − ŝ−

k

)− Kk
(
Hksk + vk − Hk ŝ−

k

)]T }
= (I − KkHk)P

−
k (I − KkHk)

T + KkRkKT
k

= P−
k − KkHkP−

k − P−
k HT

k KT
k + Kk

(
HkP−

k HT
k + Rk

)
KT

k .

(10)

We proceed to differentiate the trace of Pk with respect to
Kk and note that the trace of P−

k HT
k KT

k is equal to the trace
of its transpose KkHkP−

k . The derivative result is

d(trace Pk)

dKk
= −2

(
HkP−

k

)T + 2Kk
(
HkP−

k HT
k + Rk

)
. (11)

We set the derivative equal to zero and obtain the following
optimal Kalman gain:

Kk = P−
k HT

k

(
HkP−

k HT
k + Rk

)−1
. (12)

The posterior error covariance matrices Pk for the optimal
estimate are now computed and related to the prior error
covariance matrix P−

k by substituting the optimal gain expres-
sion into (10) as follows:

Pk = P−
k − P−

k HT
k

(
HkP−

k HT
k + Rk

)−1
HkP−

k

= P−
k − Kk

(
HkP−

k HT
k + Rk

)
KT

k

= (I − KkHk)P−
k . (13)

Note that we need prior estimate ŝ−
k and covariance matrix

P̂−
k to assimilate the measurement mk for the updated estimate

ŝk by the use of (7), and we can expect such a similar need at
the next iteration to make optimal use of the next measurement
mk+1. The updated ŝk is projected forward as ŝ−

k+1 = Aŝk via
the transition matrix while ignoring the contribution of wk due
to (4).

The prior error covariance matrix P−
k+1 associated with ŝ−

k+1
is obtained by transforming the prior error e−

k+1 = sk+1 −
ŝ−

k+1 = (Ask + wk) − Aŝk = Aek + wk , that is, we can write
the expression for P−

k+1 as follows by considering that wk is
the process noise for the previous state and has zero cross
correlation with ek :

P−
k+1 = E

[
e−

k+1e−T
k+1

] = E[(Aek + wk)(Aek + wk)
T ]

= APkAT + Qk . (14)

Having these required quantities at time tk+1, we now
can assimilate the measurement mk+1 for its optimal use in
updating the estimate ŝk+1. This recursive Kalman filtering
with its pertinent equations and the sequence of computational
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Fig. 5. Facial landmark KF framework.

steps are shown as follows. As shown in Fig. 5. As shown
in Fig. 5. The positions of the current landmarks are predicted
by the MS of corrected landmarks in the last iteration. The
Kalman gain is updated through the covariance matrix in the
last iteration. Then, the Kalman gain updates the covariance
matrix and calculates the MS of corrected landmarks based on
input measured landmarks and predicted landmarks.

However, the KF models motion on the image coordinate
system. A large head rotation in the 3-D world coordinate
system will affect the prediction performance of the KF.
In addition, head rotation gives rise to incorrect facial ROI
tracking, and a face pose constrained KF is proposed as
follows. As shown in Fig. 4, three XY Z fixed angles, including
roll φ, pitch ψ , and yaw θ angles [39], can describe face
pose intuitively in which they use three separate angles to
decompose a rotation into three different rotations around the
fixed XY Z reference frame. In general, the initial pose of
the world coordinate system is defined as the face oriented
to the camera ([φ, ψ , θ ] = [0, 0, 0]). We observe that the
Kalman-filtered partial ROI is occluded when the yaw angle
of the face pose is large. If this yaw angle is larger (or smaller)
than 45◦ (or −45◦), the right (or left) ROI on the cheek is
excluded for HR calculation.

Specifically, the camera is fixed during video recording in
police interrogation, and the transformation matrix mapping
world system coordinate to the camera system coordinate
is constant. We simply assume that the world coordinate
system completely coincides with the camera coordinate sys-
tem, such that the transformation matrix from the world
coordinate system to the camera coordinate system is I.
Therefore, the change in rotation angle is directly related
to the change in facial landmarks in the world coordinate
system. The landmarks are assumed to be viewed from a
sufficiently large distance, such that the video camera system
satisfies weak perspective projection conditions [40], [41]. The
correspondence between the 2-D face landmark l′i = [x ′

i , y ′
i ]T

under the image coordinate system and the 3-D face landmark
Li = [Xi; Yi; Zi ]T under the world coordinate system is

l′i = A[R | T]I
[

Li

1

]
=
[
α 0 0
0 α 0

]⎡⎣r1 r2 r3 t1
r4 r5 r6 t2
r7 r8 r9 t3

⎤
⎦
⎡
⎢⎢⎣

Xi

Yi

Zi

1

⎤
⎥⎥⎦

(15)

where R is the rotation matrix represented by roll–pitch–yaw
angles [39], T = [t1, t2, t3]T is the translation vector, α = f/t3,
and f is the focal length of the camera.

We assume that all facial landmarks have identical transla-
tion vectors. Let X̄ = (

∑N
i=1 Xi )/N , and we define X (n)

i =
X − X̄ , where superscript (n) represents the first letter of
‘normalization’. Similarly, we define Y (n)

i , Z (n)i , x ′(n)
i and y ′(n)

i .
We therefore normalize all the landmark coordinates, and the
vector T can be eliminated in (14)

[
x ′(n)

i

y ′(n)
i

]
=
[
α 0 0
0 α 0

]⎡⎣r1 r2 r3 0
r4 r5 r6 0
r7 r8 r9 0

⎤
⎦
⎡
⎢⎢⎣

X (n)
i

Y (n)
i

Z (n)i
1

⎤
⎥⎥⎦. (16)

We augment (15) to all landmark points, which means[
x′(n)
y′(n)

]
=
[

x ′(n)
1 x ′(n)

2 · · · x ′(n)
N

y ′(n)
1 y ′(n)

2 · · · x ′(n)
N

]

and

C =
⎡
⎣X(n)

Y(n)

Z(n)

⎤
⎦ =

⎡
⎢⎣

X (n)
1 X (n)

2 · · · X (n)
N

Y (n)
1 Y (n)

2 · · · Y (n)
N

Z (n)1 Z (n)2 · · · Z (n)N

⎤
⎥⎦.

Later, we define

λ = [λ1, λ2, λ3] = [α, 0, 0]R = [αr1, αr2, αr3]
γ = [γ1, γ2, γ3] = [0, α, 0]R = [αr4, αr5, αr6].

Thus, we can write

λC = x′(n)

λT = (CCT )−1Cx′(n)T . (17)

Note that the matrix CCT is nonsingular when all of the
points Li are not coplanar, and similarly

γ T = (CCT )−1Cy′(n)T . (18)

The first two rows of R are obtained as
[(λ2

1/α), (λ
2
2/α), (λ

2
3/α)] and [(γ 2

1 /α), (γ
2
2 /α), (γ

2
3 /α)].

The third row is then obtained as the cross product of
these two rows. The yaw angle θ is thus computed by its
relationship to the corresponding rotation matrix element R
that is represented by roll–pitch–yaw angles [39].

3) rPPG Extraction Based on POS: Taking the face image
at time t , the RGB values in the ROI are spatially averaged to
generate temporal signals x(t). According to the POS model
built by Wang et al. [11], it can be expressed as follows:
x(t) ≈ uc · I0 · c0 · (1 + i(t))+ us · I0 · s(t)+ up · I0 · p(t)

(19)

where I0 represents the stationary parts of luminance intensity.
uc, us , and up are 3 × 1 vectors. uc denotes the unit color
vector of the skin reflection. us denotes the unit color vector
of the light spectrum. up denotes the relative pulsatile strengths
in RGB channels. i(t), s(t), and p(t) are zero-mean signals.
i(t) denotes the varying parts of luminance intensity, which
is related to light source illumination variation. s(t) denotes
the varying parts of specular reflections. It is related to body
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motion, which influences the geometric structure between the
light source, skin surface, and camera. p(t) denotes the cardiac
pulse signal that we are interested in.

A 3 × 3 normalization matrix N with constraint N · uc · I0 ·
c0 = 1 is used to temporally normalize x(t) as

x̄(t) = N · x(t) ≈ 1 · (1 + i(t))+ N · us · I0 · s(t)

+ N · up · I0 · p(t). (20)

This temporal normalization can simply be implemented
by dividing its samples by their mean over a temporal inter-
val, i.e., x̄(t) = x(t)/μ(x), where μ(x) can be a running
average centered around a specific image or an average of
an overlap-add processing interval that includes the specific
image. In either case, the temporal normalization is preferably
taken over a number of images such that the interval contains
at least a pulse period. This temporal normalization can
eliminate the effect of camera quantization noise.

Subsequently, a 2 × 3 projection matrix Pp = (
0 1 −1

−2 1 1

)
is identified to project x̄(t) on two axes of the color space
plane, which is orthogonal to the vector 1 = ( 1 1 1 )T. Through
this projection, the largest motion-induced distortion of light
intensity variation along the direction 1 is eliminated from all
three camera channels

x̃(t) = Pp · N · x̄(t)

= Pp · N · us · I0 · s(t)+ Pp · N · up · I0 · p(t)

=
[

S1(t)
S2(t)

]
(21)

where S1(t) and S2(t) denote the two projected compo-
nents. According to Wang et al.’s experiment [11], motion
disturbances in two decomposed components are antiphase.
Alpha tuning can fuse two components to suppress motion
disturbances. It can be expressed as

p(t) = S1(t)+ α · S2(t) with α = σ(S1)

σ (S2)
(22)

where σ(·) denotes the standard deviation operator. When
motion disturbances dominate term x̃, the standard deviation
of each projected signal represents the motion disturbance
amplitude on each axis. Coefficient α can push the motion
disturbance strength of two projected signals into the same
level, i.e., σ(S1) = σ(α·S2); adding two antiphase signals with
the same amplitude will suppress the motion disturbances.

B. Fusion Between BCG and rPPG

Considering that the BCG signal is highly sensitive to body
movements while the rPPG signal is extremely susceptible to
face and head movements, we therefore design an adaptive
weighting scheme to fuse these two signals from various
motion disturbances for accurate and real-time HR estimation.
Specifically, we use a bank of notch filters to detect the
dominant frequency of these two input signals with the notch
frequencies being evenly distributed in a certain frequency
band. We can real-timely calculate the ratio of output to input
signals for each filter at every second, which is then used
to calculate adpative weights for the two signals at different
frequencies. Furthermore, we cached the input signals and

estimated HR 1 s, which will be multiplied with a forgetting
factor the next. This iterative fusion strategy recursively uses
the last-estimated HR and the current signals to estimate the
current HR.

According to Sadek and Biswas’s work [4], a bandpass filter
with a frequency band of 0.45–4 Hz is implemented to filter
out the noise beyond the target ranges of the HR frequency in
the BCG signal. Then, the MODWT is adopted to process
the filtered signal. The BCG signal decomposition can be
seen in Fig. 6. Sadek and Biswas’s work [4] claimed that the
fifth harmonic of MODWT-based signal decomposition has
the highest correlation to the cardiac cycle. This is exactly
consistent with our experimental results. In Fig. 6(a), although
the BCG signal is disturbed by noise, there is still a typical
abruptly rising waveform before the J-peak in the BCG signal.
Therefore, we can roughly judge the subject’s cardiac cycle.
Compared with each component of BCG decomposition,
the fifth harmonic [see Fig. 6(e)] has the highest correlation
to the cardiac cycle.

Thus, there are two filtered rPPG and BCG signals related
to the pulse signal. We utilize a bank of length-3 FIR notch
filters to process the filtered signals. The FIR notch filters’
transfer function H is denoted as follows:

H (z) = 1 − 2z−1cos(2π fi )+ z−2 (23)

where the discrete frequency is fi ∈ [ f1, . . . , fF ] and F is
denoted as the number of discrete frequencies. An example of
a length-3 FIR filter is shown in Fig. 7.

We define u[n, j ] as the input signal with n = 3, · · · and
j = 1, . . . , S, in which S is the number of input signals.
In addition, m = 1, 2, . . . , T is the index of time on the second
scale. At sample n and input signal j , the output of the filter
is yi [n, j ]
yi [n, j ] = u[n, j ] − 2u[n − 1, j ]cos(2π fi )+ u[n − 2, j ].

(24)

The input u is filtered with all the filters of the bank.
For each filter in each second, the output-to-input power is
computed as

Pi [m, j ] = Yi [m, j ]
U[m, j ] (25)

with

Yi [m, j ] = δYi [m − 1, j ]

+ (1 − δ)

f req∑
k=1

y2
i [(m − 1) ∗ f req + k, j ] (26)

U[m, j ] = δu[m − 1, j ]

+ (1 − δ)

f req∑
k=1

u2[(m − 1) ∗ f req + k, j ] (27)

where a forgetting factor range is 0 ≤ δ < 1 and freq is the
sampling frequency. To initialize, we set Yi [2, j ] = U[2, j ] =
0.5(u2[1, j ] + u2[2, j ] + · · · + u2[2 ∗ freq, j ]).

Then, Pi is used to compute a set of weights Wi [m] such
that the weighted sum of the notch frequencies can estimate
the input dominant frequency. According to the characteristics
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Fig. 6. BCG signal decomposition: (a) the original BCG signal; (b) the 8th level harmonic; (c) the 7th level harmonic; (d) the 6th level harmonic; (e) the
5th level harmonic (selected component); (f) the 4th level harmonic; (g) the 3rd level harmonic; (h) the 2nd level harmonic.

Fig. 7. Frequency response curve of length-3 FIR notch filters with different
stopband frequencies fi . The closer the dominant frequency of the input signal
is to fi , the greater the attenuation of the filtered signal.

of the notch filter, small output signals should be given more
weight, whereas large output signals should be given less
weight. Thus, we define Wi [m] for every frequency fi

Wi [m] = exp

⎛
⎝−γ 1

S

S∑
j=1

R[m, j ]Pi[m, j ]
⎞
⎠ (28)

where γ = [mini=1,...,F (R[m, j ]Pi[m, j ])]−1 and R[m, j ] for
j = 1, . . . , S are a set of weights related to the input signals.
R are defined as the signal-to-output power ratios of the input
signals for a notch filter centered on the target frequency. The

signal-to-output ratios are computed and normalized to create
a set of weights R for the S inputs as

R[m, j ] = U[m, j ]/O[m, j ]∑S
j=1 U[m, j ]/O[m, j ] (29)

where O[m, j ] is the mean squared value of the input

O[m, j ] = δO[m − 1, j ]

+ (1 − δ)

f req∑
k=1

y2
f [(m − 1) ∗ f req + k, j ] (30)

which is initialized to O[2, j ] = U(freq + 1)+ U(freq + 2)+
· · ·+U(2∗freq) and U(x) = (u[x, j ]−2u[x−1, j ]cos(2π f1)+
u[x −2, j ])2 and y f are an output from a notch filter centered
at the estimated frequency of the previous sample (m − 1)

y f [n, j ] = u[n, j ] − 2u[n − 1, j ]cos(2π f [m − 1])
+ u[n − 2, j ] (31)

where f [m − 1] is the previously estimated frequency (ini-
tialized to f [2] = f1). The final frequency (HR) estimation
of each second is then computed as the weighted sum of the
notch frequencies of the filter bank

f [m] =
∑F

i=1 Wi [m] fi∑F
i=1 Wi [m] . (32)

IV. EXPERIMENTAL RESULTS

To evaluate our multimodal sensor via comparison with
other state-of-the-art methods, we first evaluate the effect of
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DFT and corresponding motion-artifact suppression in the
proposed method by replacing the traditional facial ROI track-
ing method (KLT + ERT) in the POS-based HR estimation
framework with the proposed DFT and KF algorithms for
experimental comparison. Thirty videos in SSs and motion
disturbances are acquired and analyzed by the classical and
proposed methods. Specifically, the state-of-the-art methods
for comparison are as follows: MODWT-BCG [4], ICA [42],
PBV [29], and POS [11] methods. The following metrics are
used to evaluate the performances of facial ROI tracker and
HR estimation.

1) Mean Frame Rate (MFR): The average number of video
frames that the program can process in one second

MFR = 1

N

N∑
n=1

F(n) (33)

where F(n) represents the number of video frames
which has been processed in the nth second.

2) Tracker Quality (TQ): We define the TQ metric as the
ratio of the number of pixels neff in the valid facial areas
to the number of pixels nall in the overall ROIs. The valid
facial areas are determined by manual marking. The
TQ’s value range should be [0, 1]. When the measured
value is close to 1, it means that the face tracker has
achieved high-precision tracking

TQ = neff

nall
. (34)

3) Mean Absolute Error (MAE): We use this metric to
compare our method with other methods on the HR
estimation accuracy and compare the effect of each
module in the algorithm on the accuracy of the entire
algorithm

MAE = 1

N

N∑
n=1

∣∣HRn
est − HRn

g

∣∣ (35)

where HRn
est is the estimation of HR and HRn

g is the
ground truth of HR.

4) Root-Mean-Square Error (RMSE): We use RMSE to
measure the difference between the reference HR and
the HR calculated from the video. RMSE represents
the sample standard deviation of the absolute difference
between the reference value and the measured value, that
is, the smaller the RMSE is, the more accurate the HR
estimation is

RMSE =
√√√√ 1

N

N∑
n=1

(
HRn

est − HRn
g

)2
. (36)

5) Pearson Correlation of HR: The Pearson correlation r is
applied to evaluate the correspondence of HR between
the quasi-contactless signal and the ECG-reference

r = n
∑

xi yi −∑ xi
∑

yi√
n
∑

x2
i − (∑ xi

)2√
n
∑

y2
i − (∑ yi

)2 . (37)

Fig. 8. Tracking quality in three cases of an SS, MS, and nontarget face
entrance for the proposed DFT-KF and traditional KLT + ERT methods. The
red lines for the DFT-KF method show better tracking quality than the blue
lines for the KLT + ERT method.

As shown in Fig. 8(a), in the SS, there is no obvi-
ous difference between the proposed DFT-KF and tradi-
tional KLT + ERT methods in terms of tracking quality.
Fig. 8(b) and (c) shows that the proposed method outperforms
traditional methods in the two cases of motion and nontarget
entrance disturbances.

We further evaluate different ROI tracking methods on five
persons in terms of the mean TQ and MFR. Based on the above
two metrics, the correctness and real-time performance of ROI
selection can be evaluated. We collect 30-s-long data from
the ECG, BCG, and rPPG sensors for each sensor. To ensure
that the data are simultaneously collected at the same time in
the log file, all the data collection programs were run on one
computer. The log file saved the time node in each sampling
for data alignment. As shown in Table I, KLT-ERT represents
the traditional face alignment method. DFT and DFT-KF
represent our proposed algorithm and the further improved
algorithm, respectively. The proposed method with DFT and
face pose constrained KF shows better superiority than the
traditional facial ROI tracker, especially in the MS. In addition,
the PFLD we adopted in DFT is an optimized model that
is trained directly on CPU- and GPU-based computational
frameworks without model inference and acceleration. The
frame rates of the GPU-optimized DFT tracking methods are
greater than those of the other methods in our experimental
results.

The correlation between the ECG, BCG, and rPPG sig-
nals at different scales of motion disturbances is verified by
experiments. The J-peak of BCG and the P-peak of PPG are
supposed to appear later than the R-peak of ECG since the
electrical activity precedes the mechanical activity. As shown
in Fig. 9(a), in the SS, the J-peak in the original BCG
signal has an evident correspondence with the peak of the
fifth-harmonic component of MODWT. All the J-peaks of
BCG appear slightly behind the R-peaks of reference-ECG.
At the same time, the P-peak in the rPPG signal also has
a similar exact correlation to the R-peak in the ECG signal.
For the MS in Fig. 9(b), the motion disturbance overwhelms
the characteristic waveform of BCG signal, the peak of the
fifth-harmonic component of MODWT no longer has a strong
correspondence with the J-peak. There is not an exact agree-
ment between the J-peak of BCG and the R-peak of ECG
signals. However, the P-peak of the rPPG signal can still
approximately correspond to the R-peak in the ECG signal.
Therefore, in the MS, it is suitable to estimate HR based on
the rPPG signal estimated by our multimodal HR sensor.
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Fig. 9. Comparison of pulse signal extraction from different HR sensors in two states. The J-peak in the original BCG signal and the peak of the decomposed
signal based on MODWT (red line) have evident correlations with the R-peak of the ECG signal in the SS. In the MS, there is no correlation between the
J-peak of BCG and the R-peak of the ECG signal, whereas the P-peak of the rPPG signal from the proposed method approximately corresponds to the R-peak
of the ECG signal. (a) Stable state. (b) MS.

TABLE II

COMPARISON OF DIFFERENT ROI TRACKING MODULES IN SS AND MS

To further compare the signal quality of the reference ECG-,
MODWT-BCG-, and DFT-KF-based rPPG signals, we demon-
strate the short-time Fourier transform (STFT) spectra of these
signals in Fig. 10. The power spectrum of a clean PPG from
a healthy subject should normally have peaks representing the
HR with various harmonics of HR frequency. Since we applied
a 0.5–4-Hz bandpass filter to the original signal, the spectrum
should only retain one main HR component and three other
harmonic components [43].

Compared with the spectra of the standard ECG signal and
BCG signal, the STFT spectra of the rPPG signal contain obvi-
ous bands of harmonic components. In the first row of Fig. 10
for the SS, BCG’s HR component has higher kurtosis and
SNR, appearing as a yellow stripe in the spectrogram with a
clear contrast to the blue background. Among the rPPG-based
algorithms, DFT-KF-POS shows a cleaner and more focused
STFT spectrum with a high SNR, which manifests as a narrow
and bright pulsatile stripe. The DFT-KF-ICA STFT spectrum
shows one wider pulsatile stripe and one extra shorter stripe,
which means that its HR is clearer than the DFT-KF-POS
PPG signal. DFT-KF-PBV shows noisier and more diffusive
spectra and performs worse than other methods. Its pulsatile
stripe brightness is not high compared with the background,
which indicates that the SNR of the signal is not good. In some
time periods, the stripe is overwhelmed by noise to indicate
its poor HR estimation performance.

In the second row of Fig. 10 for the motion disturbance
state, the BCG signal and DFT-KF-ICA PPG signal are
severely distorted, and the corresponding pulsatile stripe of
the spectrum cannot be found. The SNR of the signals
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Fig. 10. Short-time Fourier transform spectra obtained by ECG-reference, MODWT-BCG, DFT-KF-POS, and two other rPPG algorithms based on DFT.
The ground-truth ECG signal and the MODWT-BCG signal in the SS highlight the exact HR component (as one yellow stripe) having higher kurtosis and
SNR with a clear contrast to the blue background. In both SS and MS, the STFT spectrum of the proposed DFT-KF-POS multimodal method contains more
focused stipes that correspond to the several harmonics of HR frequency compared with the other two rPPG methods based on DFT and KF algorithms.

TABLE III

MAE OF DIFFERENT HR ESTIMATION METHODS

IN THE SS AND MS MOTION

drops significantly. However, the pulsatile stripe of the spec-
trum in the other two rPPG signals is still visible. Among
them, the pulsatile stripe of the proposed DFT-KF-POS is
clearest from the extracted signal, which demonstrates the best
HR estimation performance in motion disturbances.

Later, we conducted comparative experiments to evaluate
the HR estimation performance of most state-of-the-art algo-
rithms in the SS and MS. As shown in Table II, the whole
MAE value is high because we completely and fairly analyze
all estimations in whole time periods without deleting any
gross errors in the HR estimation per second. Some incon-
sistent estimation results are significantly different from past
calculations, which therefore raise the MAE values of the
final statistical result. The accuracy of the POS-based methods
is relatively excellent compared with other rPPG methods.
In our experiments, the proposed rPPG with BCG fusion run
in the SS performs slightly worse than the optical-fiber-based
MODWT-BCG algorithm. This is because BCG has proved
to produce accurate HR estimation when there is less or no
motion disturbance. This may also be due to the possibility of
introducing noise from the rPPG signal in BCG fusion.

Fig. 11. Correlation and Bland–Altman plots of the DFT-KF-ICA and BCG
HR estimation against ECG reference of eight users.

Fig. 12. Correlation and Bland–Altman plots of the DFT-KF-POS and BCG
HR estimation against the ECG reference of eight users.

However, in the MS, the proposed motion-robust rPPG
algorithm is superior to all the other algorithms, including
the BCG and original POS algorithms, in terms of the MAE
value (see Table II). The large face and body movements
in the MSs introduce largely varying force signals that far
outweigh the pulsatile signal for the BCG sensor and result
in difficulties in face tracking and HR estimation for classical
rPPG algorithms. However, by achieving the high performance
of the KF-regularized DFT and motion-artifact correction via
multimodal fusion, the proposed rPPG algorithm is robust to
motion disturbance and provides consistent HR estimation in
all HR measurements.
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Finally, we conduct DFT-KT-ICA and BCG and DFT-KT-
POS and BCG method comparisons. The Pearson correlation
and Bland–Altman plots [44] are reported in Figs. 11 and 12,
respectively. The RMSE of DFT-KT-POS and BCG is lower,
and the correlation coefficient is higher than that of DFT-KF-
ICA and BCG. The distance between limit lines (dotted line)
and arithmetic mean of DFT-KT-POS and BCG is smaller.
This means that DFT-KT-POS and BCG is more reliable in
long-term HR estimation.

V. CONCLUSION

In this article, we propose a multimodal quasi-contactless
HR sensor that can be used in computer-aided police interroga-
tion by fusing optical-fiber-based BCG with video-based rPPG
physiological signals via a microbending fiber-optic cushion
sensor and RGB camera. We design a DFT via face alignment
and object tracking technology, as well as a face pose con-
strained KF, to improve the robustness of the rPPG algorithm
in extreme poses, motion disturbances, and multiplayer scenes.
It can realize face tracking and correct selection of ROI
in challenging situations, such as face occlusion, multiple
faces, and large-angle rotation of the target face in real police
interrogation.

The characteristics of these two multimodal signal types
under different MSs were analyzed. In a relatively SS, the HR
calculated based on the optical-fiber-based BCG sensor is
more accurate than that calculated based on the video-based
rPPG sensor. When the distortion of motion artifacts on the
BCG signal is more intense, the video-based rPPG sensor
produces more accurate HR estimation than the BCG sensor.
The notch filters applied for two signal sources calculate
the weights of different discrete frequencies. Simultaneously,
the current HR estimation result is compensated by the con-
sistent HR estimation in the past result. The multimodal HR
sensor has higher accuracy than the method solely based on
single-modal rPPG or BCG-based HR sensor.

More advanced rPPG-based contactless HR sensors with
detail-preserving noise removal [45], [46], long-term face
occlusion, as well as face and body shake resistance [47]
will be developed in future work to be more robust and
accurate to large-motion disturbances in various challenging
conditions for calculating more useful physiological indices,
such as respiration rate, HR variability, and blood pressure
[45], in computer-aided police interrogation.
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